Исследование полос непрозрачности в фотонном кристалле, составленном из металлических либо диэлектрических цилиндров конечной длины / Investigation of Bandgaps in a Photonic Crystal Composed of Metal or Dielectric Cylinders of Finite Length

Донец И.В. / Donets, I.V.
Южный Федеральный Университет / Southern Federal University
Лерер А.М. / Lerer, A.M.
Южный Федеральный Университет / Southern Federal University
Цветковская С.М. / Tsvetkovskaya, S.M.
Донской Государственный Технический Университет / Don State Technical University
Выпуск в базе РИНЦ
Донец И.В., Лерер А.М., Цветковская С.М. Исследование полос непрозрачности в фотонном кристалле, составленном из металлических либо диэлектрических цилиндров конечной длины // Физические основы приборостроения. 2020. Т. 9. № 3(37). С. 78–85. DOI: 10.25210/jfop-2003-078085
Donets, I.V., Lerer, A.M., Tsvetkovskaya, S.M. Investigation of Bandgaps in a Photonic Crystal Composed of Metal or Dielectric Cylinders of Finite Length // Physical Bases of Instrumentation. 2020. Vol. 9. No. 3(37). P. 78–85. DOI: 10.25210/jfop-2003-078085


Аннотация: Развит строгий метод электродинамического анализа собственных волн фотонных кристаллов (ФК) составленных из периодических цилиндров. Цилиндры либо полые металлические, либо сплошные диэлектрические. Результаты верифицированы сравнением с результатами пакета на основе метода конечных элементов. Рассчитаны дисперсионные характеристики ФК в районе полосы непрозрачности в зависимости от направления распространения волны. Анализировались ФК трех типов — составленных из металлических цилиндров, диэлектрических цилиндров и воздушных цилиндрических отверстий в диэлектрике. Развитое программное обеспечение требует на 1-2 порядка меньше времени счета чем известные пакеты электродинамического моделирования.
Abstract: A strict method of electrodynamic analysis of the eigenwaves of photonic crystals (PC) composed of periodic cylinders has been developed. Cylinders are either hollow metal or solid dielectric. The results are verified by comparison with the results of the package based on the finite element method. The dispersion characteristics of the FC in the area of bandgap are calculated depending on the direction of wave propagation. Three types of FC were analyzed: made up of metal cylinders, dielectric cylinders, and air cylindrical holes in the dielectric. The developed software requires 1-2 orders of magnitude less time than the known packages of electrodynamic modeling.
Ключевые слова: электродинамический анализ, полоса непрозрачности, периодические цилиндры, photonic crystal, electrodynamic analysis, bandgap, электродинамический анализ


Литература / References
  1. De Sabata, A. et al. EBG Modification in a Parallel Plate 2D Periodic Structure by Metal Inclusions // 2014 International Conference on Electromagnetics in Advanced Applications (ICEAA). IEEE, 2014. P. 822-825. DOI: 10.1109/ICEAA.2014.6903971.
  2. Mondal, S.K., Stadler, B.J.H. Novel Designs for Integrating YIG/Air Photonic Crystal Slab Polarizers with Waveguide Faraday Rotators // IEEE Photonics Technology Letters. 2004. Vol. 17. No. 1. P. 127-129 DOI: 10.1109/LPT.2004.838156.
  3. Niemi, T., Frandsen, L.H., Hede, K.K., Harpoth, A., Borel, P.I., and Kristensen, M. Wavelength-Division Demultiplexing Using Photonic Crystal Waveguides. // IEEE Photonics Technology Letters. Vol. 18. No. 1. 2006. P. 226-228.
  4. Chu, T. et al. Tunable Optical Notch Filter Realized by Shifting the Photonic Bandgap in a Silicon Photonic Crystal Line-Defect Waveguide // IEEE Photonics Technology Letters. 2006. Vol. 18. No. 24. P. 2614-2616. DOI: 10.1109/LPT.2006.887366.
  5. Han, T. Y., Lee, H. S., and Lee, E. H. Design of Compact Silicon Optical Modulator Using Photonic Crystal MZI Structure // 2008 5th IEEE International Conference on Group IV Photonics. IEEE, 2008. P. 308-310. DOI: 10.1109/GROUP4.2008.4638182.
  6. Ma, P. et al. Compact Inline Resonant Photonic Crystal Fabry-Pérot Cavities for TM-Polarized Light // IEEE Photonics Technology Letters. 2010. Vol. 23. No. 4. P. 224-226. DOI: 10.1109/LPT.2010.2096535.
  7. Ek, S. et al. Enhanced Gain in Photonic Crystal Amplifiers // 2012, 14th International Conference on Transparent Optical Networks (ICTON). IEEE, 2012. P. 1-4. DOI: 10.1109/ICTON.2012.6253790.
  8. Tee, D.C. et al. Structure Tuned, High Transmission 180° Waveguide Bend in 2-D Planar Photonic Crystal // IEEE Photonics Technology Letters. 2013. Vol. 25. No. 15. P. 1443-1446. DOI: 10.1109/LPT.2013.2266893.
  9. Nozaki, K. et al. First Demonstration of 4-Bit, 40-Gb/s Optical RAM Chip Using Integrated Photonic Crystal Nanocavities // 2012 International Conference on Photonics in Switching (PS). IEEE. 2012. P. 1-3. ISBN: 978-2-9123-2861-8.
  10. Shen, G. et al. A Tnnable Electro-Optic Microwave Photonic Filter Based on Photonic Crystal for 60GHz Radio Over Fiber System // 2013, 12th International Conference on Optical Communications and Networks (ICOCN). IEEE. 2013. P. 1-4. DOI: 10.1109/ICOCN.2013.6617223.
  11. Li, S. et al. A Tunable Terahertz Photonic Crystal Narrow-Band Filter //IEEE Photonics Technology Letters. 2015. Vol. 27. No. 7. P. 752-754. DOI: 10.1109/LPT.2015.2391127.
  12. Kuzma, A., Uherek, F., and Škriniarová, J. Photonic Crystal Based Add/Drop Filters for Sensing // 2016 Photonics North (PN). IEEE. 2016. P. 1-1. DOI: 10.1109/PN.2016.7537913.
  13. Kumar, R. A., Srinivas, T., and Yadunath, T. R. Design and Simulation of Effective 90 Bend Waveguide Based on Hexagonal Lattice Photonic Crystal // 2018 IEEE Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER). IEEE, 2018. P. 24-27. DOI: 10.1109/DISCOVER.2018.8674106.
  14. Ceccuzzi, S. et al. Effect of Source Position on Directive Radiation in EBG Structures with Epsilon-Near-Zero Behavior // IEEE Antennas and Wireless Propagation Letters. 2019. Vol. 18. No. 6. P. 1253-1257. DOI: 10.1109/LAWP. 2019.2913997.
  15. Du, P., Cheng, Z. Enhancing Light Extraction Efficiency of Vertical Emission of AlGaN Nanowire Light Emitting Diodes with Photonic Crystal // IEEE Photonics Journal. 2019. Vol. 11. No. 3. P. 1-9. DOI: 10.1109/JPHOT.2019.2920517.
  16. Morita, Y., Tsuji, Y., and Hirayama, K. Proposal for a Compact Resonant-Coupling-Type Polarization Splitter Based on Photonic Crystal Waveguide with Absolute Photonic Bandgap // IEEE Photonics Technology Letters. 2008. Vol. 20. No. 2. P. 93-95. DOI: 10.1109/LPT.2007.912558.
  17. Chiu, W.Y. et al. Directional Coupler Formed by Photonic Crystal InAlGaas Nanorods // Journal of Lightwave Technology. 2008. Vol. 26. No. 5. P. 488-491.
  18. Lai, C.F. et al. Hole Shape Effect of Photonic Crystals on the Guided Resonance Modes in GaN-Based Ultra-Thin Film-Transferred Light-Emitting Diodes // Conference on Lasers and Electro-Optics. Optical Society of America. 2010. P. JTuD30.
  19. Yuan, G. et al. Two-Dimensional Square Lattice Elliptical Dielectric Rods Photonic Crystal Bandgap Characteristics. 2010. DOI: 10.1049/cp.2010.1235.
  20. Tsuji, Y., Morita, Y., and Hirayama, K. Photonic Crystal Waveguide Based on 2-D Photonic Crystal with Absolute Photonic Band Gap //IEEE Photonics Technology Letters. 2006. Vol. 18. No. 22. P. 2410-2412. DOI: 10.1109/LPT.2006.885295.
  21. Benachour, Yassine. Nonlinear Optics of Photonic Crystals. // 2020 Advances in Science and Engineering Technology International Conferences (ASET). 4 Feb. — 9 April 2020. Dubai. United Arab Emirates.
  22. 3D Electromagnetic Field Simulator for RF and Wireless Design: https://www.ansys.com/products/electronics/ansys-hfss