Пономарев В. И. / Ponomaryov, V. I.
National Polytechnic Institute of Mexico, Mexico-city / RUS National Polytechnic Institute of Mexico, Mexico-city
Castillejos H. / Castillejos, H.
National Polytechnic Institute of Mexico, Mexico-city / RUS National Polytechnic Institute of Mexico, Mexico-city
Duchen G. / Duchen, G.
National Polytechnic Institute of Mexico, Mexico-city / RUS National Polytechnic Institute of Mexico, Mexico-city
Выпуск в базе РИНЦ
Пономарев В. И., Castillejos H., Duchen G. Алгоритмы сегментации, основанные на вейвлет-преобразовании и их реализация в процессоре цифровой обработки сигналов // Физические основы приборостроения. 2012. Т. 1. № 3(4). С. 55–67. DOI: 10.25210/jfop-1203-055067
Ponomaryov, V. I., Castillejos, H., Duchen, G. Wavelet Transform Segmentation Techniques Implemented on Digital Signal Processor // Physical Bases of Instrumentation. 2012. Vol. 1. No. 3(4). P. 55–67. DOI: 10.25210/jfop-1203-055067
Аннотация: Рассмотрен новый подход в сегментации дермоско- пических изображений, использующий вейвлет-пре- образования. Разработанные алгоритмы (W-FCM, W-CPSFCM и WK-Means) в результате ROC анализа показали значительно лучшие результаты в процессе сегментации изображений, чем известные. Предло- женная W-CPSFCM процедура позволяет найти чис- ло кластеров без вмешательства специалиста. Пред- ложенные и лучшие из известных алгоритмы реали- зованы а цифровом процессоре DSP TMS320DM642.
Abstract: A novel approach to segmentation of dermoscopic images in wavelet transform space is presented. The designed frameworks (W-FCM, W-CPSFCM and WK-Means) according to ROC curve analysis demonstrate sufficiently good results. The novel W-CPSFCM algorithm estimates a number of clusters in automatic mode without the intervention of a specialist. The implementation of the proposed segmentation algorithms on the Texas Instruments DSP TMS320DM642 demonstrates possible real time processing mode for images of different nature.
Ключевые слова: вейвлеты, дермоскопия, ROC характеристики, цифровая обработка сигналов и изображений, segmentation algorithms, wavelets, dermoscopic images, ROC characteristics, digital image processing, вейвлеты
Литература / References
- Vestergaard, M., Macaskill, P., Holt, P., and Menzies, S. Dermoscopy Compared with Naked Eye Examination for the Diagnosis of Primary Melanoma: a Metaanalysis of Studies Performed in a Clinical Setting // British Journal of Dermatology. 2008. Vol. 159. No. 3. P. 669–676.
- Argenziano, G., Fabbrocini, G., Carli, P. et al. Epiluminescence Microscopy for the Diagnosis of Doubtful Melanocytic Skin Lesions. Comparison of the Abcd Rule of Dermatoscopy and a New 7-Point Checklist Based on Pattern Analysis // Archives of Dermatology. 1998. Vol. 134, No. 12. 156370. Doi; 100.1001/Archderm.134.12.1563.
- Ascierto, P., Palmieri, G., Celentano, E. et al. Sensitivity and Specificity of Epiluminescence Microscopy: Evaluation on a Sample of 2731 Excised Cutaneous Pigmented Lesions // British Journal of Dermatology. Vol.142. No. 5. P. 893.
- Celebi, M., Iyatomi, H., Schaefer, G., and Stoecker, W. Lesion Border Detection in Dermoscopy Images // Computerized Medical Imaging and Graphics. 2009, Vol. 33. No. 2. P. 148–153.
- Silveira, M., Nascimento, J., Marques, J. et al. Comparison of Segmentation Methods for Melanoma Diagnosis in Dermoscopy Images// IEEE Journal on Selected Topics in Signal Processing. 2009. Vol. 3. No. 1. P. 35–45.
- Celebi, M., Kingravi, H., Iyatomi, H. et al. Border Detection in Dermoscopy Images Using Statistical Region Merging// Skin Research and Technology. 2008. Vol. 14. No. 3. P. 347–353.
- Zadeh, L. Fuzzy Approach to Color Region Extraction //Information and Control, 1965. Vol. 8. No. 3. P. 338–353.
- Celebi, M., Kingravi, H., Uddin, B. et al. A Methodological Approach to the Classification of Dermoscopy Images // Computerized Medical Imaging and Graphics. 2007. Vol. 31. No. 6. P. 362–373.
- Abbas, Q., Celebi, M., and García, I. Hair Removal Methods: a Comparative Study for Dermoscopy Images //Biomedical Signal Processing and Control. 2011. Vol. 6. No. 4. P. 395–404.
- Abbas, Q., Celebi, M., Fondon-Garcia, I., and Rashid, M. Lesion Border Detection in Dermoscopy Images Using Dynamic Programming // Skin Research and Technology, 2011. Vol. 17. P. 91–100.
- Bello, M. A. Combined Markov Random Field and Wave-Packet Transform-Based Approach for Image Segmentation //IEEE Trans. Image Processing. 1994. Vol. 3. No. 6.P. 834–846.
- Strickland, R. and Hahn, H. Wavelet Transform Matched Filters for the Detection and Classification of Microcalcifications in Mammography // Proc. Of the Int. Conference on Image Processing, Washington, D. C., USA. 1995. Vol. 1. P. 422–425.
- Zhang, X. and Desai, M. Segmentation of Bright Targets Using Wavelets and Adaptive Thresholding // IEEE Trans. Image Processing. 2002. Vol. 10. No. 7. P. 1020–1030.
- Mallat, S. Wavelet Tour of Signal Processing. SanDiego, CA: Academic Press, 1998.
- Kravchenko, V., Meana, H., and Ponomaryov, V. Adaptive Digital Processing of Multidimensional Signals with Applications. Fizmatlit Edit. Moscow, 2009 (Available in http://www.posgrados.esimecu.ipn.mx/).
- The International Atlas of Dermoscopy and Dermatoscopy. www.dermoscopyatlas.com
- Alpert, S., Galun, M., Basri, R., and Brandt, A. Image Segmentation by Probabilistic Bottom-Up Aggregation and Cue Integration // Proc. Of the IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, MN, USA, July 2007, P. 1–8.
- Joel, G., Philippe, S., David, G. et al. Validation of Segmentation Techniques for Digital Dermoscopy // Skin Research and Technology. 2002. Vol. 8. No. 4. P. 240–249.
- Texas Instruments. TMS320DM642 Evaluation Module with TVP Video Encoders, Technical Reference 507345–0001 Rev. B, December 2004.
- Shen, E. Code Composer Studio Texas Instruments //8th Texas Instruments Developer Conference, India, Bangalore, 30 Nov-1Dec. 2005.