Черепанов В. В. / Cherepanov, V. V.
Южный федеральный университет / Southern Federal University
Выпуск в базе РИНЦ
Черепанов В. В. Нелинейная поверхностная проводимость графена: формулы и экспериментальные данные // Физические основы приборостроения. 2020. Т. 9. № 4(38). С. 2–17. DOI: 10.25210/jfop-2004-002017
Cherepanov, V. V. Nonlinear Surface Conductivity of Graphene: Formulas and Experimental Data // Physical Bases of Instrumentation. 2020. Vol. 9. No. 4(38). P. 2–17. DOI: 10.25210/jfop-2004-002017
Аннотация: Нелинейное поведение графена находит широкое применение при моделировании устройств, использующих процессы генерации третьей гармоники и четырехволнового смешения. Для их описания часто используют нелинейную поверхностную проводимость третьего порядка. Статья представляет собой обзор наиболее важных формул, для ее вычисления. Показано, что в реальных системах необходим учет эффектов влияния химического потенциала графена, процессов рассеяния и конечной температуры. Обозначены области применимости полных и приближенных выражений, которые показывают хорошее соответствие с имеющимися экспериментальными данными.
Abstract: The nonlinear behavior of graphene is widely used in modeling devices that use third-harmonic generation and four-wave mixing processes. Third-order nonlinear surface conductivity is often used to describe them. This article provides an overview of the most important formulas for conductivity calculating. It is shown, that in real systems the effects of the graphene chemical potential, scattering processes and finite temperature must be taken into account. The areas of applicability of complete and approximate expressions were identified, which showed a good agreement with the experimental data available.
Ключевые слова: нелинейная проводимость, третья гармоника, ТГц, оптика, резонанс, graphene, nonlinear condu…, third harmonic, THz, optics, нелинейная проводимость
Литература / References
- Xia, F., Yan, H., and Avouris, P. The Interaction of Light and Graphene: Basics, Devices, and Applications // Proc. IEEE. 2013. Vol. 101. No. 7. P. 1717-1731. DOI: 10.1109/JPROC.2013.2250892
- Mikhailov, S.A. Non-Linear Electromagnetic Response of Graphene // EPL. 2007. Vol. 79. No. 2. P. 27002. DOI: 10.1209/0295-5075/79/27002
- Mikhailov, S.A., Ziegler, K. Nonlinear Electromagnetic Response of Graphene: Frequency Multiplication and the Self-Consistent-Field Effects // Journal of Physics: Condensed Matter. 2008. Vol. 20. No. 38. P. 256 – 259. DOI: 10.1088/0953-8984/20/38/384204
- Dragoman, M., Neculoiu, D., Deligeorgis, G. et al. Millimeter-Wave Generation Via Frequency Multiplication in Graphene // Applied Physics Letters. 2010. Vol. 97. No. 9. P. 093101-3. DOI: 10.1063/1.3483872
- Hendry, E., Hale, P.J., Moger, J. et al. Coherent Nonlinear Optical Response of Graphene // Physical Review Letters. 2010. Vol. 105. No. 9. P. 097401. DOI: 10.1103/PhysRevLett.105.097401
- Hafez, H.A., Turchinovich, D., Bonn, M. et al. Terahertz Nonlinear Optics of Graphene: From Saturable Absorption to High-Harmonics Generation // Adv. Opt. Materials. 2019. Vol. 7. No. 19. P. 1900771. DOI: 10.1002/Adom.201900771
- Wu, R., Zhang, Y., Yan, S. et al. Purely Coherent Nonlinear Optical Response in Solution Dispersions of Graphene Sheets // Nano Letters. 2011. Vol. 11. No. 12. P. 5159-5164. DOI: 10.1021/nl2023405
- Zhang, H., Virally, S., Bao, Q. et al. Z-Scan Measurement of the Nonlinear Refractive Index of Graphene // Optics Letters. 2012. Vol. 37. No. 11. P. 1856-1858. DOI: 10.1364/OL.37.001856
- Kumar, N., Kumar, J., Gerstenkorn, C. et al. Third Harmonic Generation in Graphene and Few-Layer Graphite Films // Physical Review B: Condensed Matter and Materials Physics. 2013. Vol. 87. No. 12. P. 121406. DOI: 10.1103/PhysRevB.87.121406.
- Hong, S.-Y., Dadap, J.I., Osgood, Jr. et al. Optical Third-Harmonic Generation in Graphene // Physical Review X. 2013. Vol. 3. No. 2. P. 021014. DOI: 10.1103/PhysRevX.3.021014.
- Soavi, G., Wang, G., Purdie, D.G. et al. Broadband, Electrically Tunable Third Harmonic Generation in Graphene // Nature Nanotechnology. 2018. Vol. 13. No. 7. P. 583-588. DOI: 10.1038/s41565-018-0145-8
- Dremetsika, E., Kockaert, P. Enhanced Optical Kerr Effect Method for a Detailed Characterization of the Third Order Nonlinearity of 2D Materials Applied to Graphene // Phys. Rev. B. 2017. Vol. 96. No. 23. P. 235422. DOI: 10.1103/PhysRevB.96.235422.
- Dremetsika, E., Dlubak, B., Gorza, S.-P. et al. Measuring the Nonlinear Refractive Index of Graphene Using the Optical Kerr Effect Method // Opt. Lett. 2016. Vol. 41. No. 14. P. 3281-3284. DOI: 10.1364/OL.41.003281.
- Kundys, D., Marshall, O.P., Rodriguez, F., et al. Nonlinear Light Mixing by Graphene Plasmons // Nano Letters. 2018. Vol. 18. No. 1. P. 282-287. DOI: 10.1021/Acs.Nanolett.7b04114.
- Gu, T., Petrone, N., McMillan, J. F. et al. Regenerative Oscillation and Four-Wave Mixing in Graphene Optoelectronics // CLEO: Science and Innovations 2012. San Jose. California. United States. 6-11 May 2012. DOI: 10.1038/Nphoton.2012.147.
- Hafez, H. A., Kovalev, S., Deinert, J.-C. et al. THz Nonlinear Response of Landau – Quantized Graphene // CLEO: APlications and Technology 2018. San Jose. California. United States. 13-18 May 2018. ISBN: 978-1-943580-42-2.
- König-Otto, J. C., Wang, Y., Belyanin, A. et al. THz Nonlinear Response of Landau-Quantized Graphene // CLEO: QELS_Fundamental Science 2017. San Jose. California. United States. 14-19 May 2017. ISBN: 978-1-943580-27-9
- Alexander, K., Savostianova, N. A., Mikhailov, S. A. et al. Electrically Tunable Optical Nonlinearities in Graphene-Covered SiN Waveguides Characterized by Four-Wave Mixing // ACS Photonics. 2017. Vol. 4. No. 12. P. 3039-3044. DOI: 10.1021/Acsphotonics.7b00559
- Dean, J. J., Van Driel, H. M. Second Harmonic Generation From Graphene and Graphitic Films // Applied Physics Letters. 2009. Vol. 95. No. 26. P. 261910-3. DOI: 10.1063/1.3275740.
- Dean, J. J., Van Driel, H. M. Graphene and Few-Layer Graphite Probed by Second-Harmonic Generation: Theory and Experiment // Physical Review B: Condensed Matter and Materials Physics. 2010. Vol. 82. No. 12. P. 125411. DOI: 10.1103/PhysRevB.82.125411
- Glazov, M. M., Ganichev, S. D. High Frequency Electric Field Induced Nonlinear Effects in Graphene // Physics Reports. 2014. Vol. 535. No. 15 P. 101-138. DOI: 10.1016/j.Physrep.2013.10.003
- Lin, I-T., Fan, C., and Liu, J.-M. Propagating and Localized Graphene Surface Plasmon Polaritons on a Grating Structure // IEEE Journal of Selected Topics in Quantum Electronics. 2017. Vol. 23. No. 1. P. 4600704. DOI: 10.1109/JSTQE.2016.2596262
- Luo, X., Qiu, T., Ni, Z., and Lu, W. Plasmons in Graphene: Recent Progress and Applications // Materials Science and Engineering: R Reports. 2013. Vol. 74. No. 11. P. 351-376. DOI: 10.1016/j.Mser.2013.09.001
- Jadidi, M. M., Murphy, T. E., Mittendorff, M. et al. Nonlinear Terahertz Absorption of Graphene Plasmons // Nano Letters. 2016. Vol. 16. No. 4. P. 2734-2738. DOI: 10.1021/Acs.Nanolett.6b00405
- Lin, X., Chen, H., Xu, Y. et al. Unidirectional Surface Plasmons in Nonreciprocal Graphene // New Journal of Physics. 2013. Vol. 15. P. 113003. DOI: 10.1088/1367-2630/15/11/113003
- Linder, J., Halterman, K. Graphene-Based Extremely Wide-Angle Tunable Metamaterial Absorber // Scientific Reports. 2016. Vol. 6. P. 31225. DOI: 10.1038/Srep31225
- Ooi, K.J.A., Leong, P.C., Ang, L.K., Tan, D.T.H. All-Optical Control on a Graphene-on-Silicon Waveguide Modulator // Scientific Reports. 2017. Vol. 7. No. 1. P. 12748. DOI: 10.1038/s41598-017-13213-6
- Zhong, S., Lu, Y., Li, C. et al. Tunable Plasmon Lensing in Graphene-Based Structure Exhibiting Negative Refraction // Scientific Reports. 2017. Vol. 7. P. 41788. DOI: 10.1038/Srep41788
- Ooi, K.J.A., Chu, H.S., Bai, P., Ang, L.K. Mid-Infrared Active Graphene Nanoribbon Plasmonic Waveguide Devices // Journal of the Optical Society of America B: Optical Physics. 2013. Vol. 30. No. 12. P. 3111-3116. DOI: 10.1364/JOSAB.30.003111
- Low, T., Avouris, P. Graphene Plasmonics for Terahertz to Mid-Infrared Applications // ACS Nano. 2014. Vol. 8. No. 2. P. 1086-1101. DOI: 10.1021/nn406627u.
- Mikhailov, S. Nonlinear Electrodynamic Properties of Graphene and Other Two-Dimensional Materials // Sensors & Transducers. 2018. Vol. 225. No. 9. P. 25-35
- Guo, T., Jin, B., and Argyropoulos, C. Hybrid Graphene-Plasmonic Gratings to Achieve Enhanced Nonlinear Effects at Terahertz Frequencies // Phys. Rev. AP. 2019. Vol. 11. No. 2. P. 024050. DOI: 10.1103/PhysRevApplied.11.024050
- Jin, B., Guo, T., and Argyropoulos, C. Enhanced Third Harmonic Generation with Graphene Metasurfaces // Journal of Optics. 2017. Vol. 19. No. 9. P. 094005. DOI: 10.1088/2040-8986/aa8280
- B. Jin and C. Argyropoulos. Nonlinear Graphene Metasurfaces with Advanced Electromagnetic Functionalities // Proceedings of SPIE – the International Society for Optical Engineering 16, Design, Materials Fabrication, Characterization, and APlications. 2018. P. 107221R. DOI: 10.1117/12.2319878
- Linder, J., Halterman, K. Dynamical Tuning Between Nearly Perfect Reflection, Absorption, and Transmission of Light Via Graphene/Dielectric Structures // Scientific Reports. 2016. Vol. 6. P. 38141. DOI: 10.1038/Srep38141.
- Boyd, R.W. Nonlinear Optics // San Diego. CA: Academic Press. 2008.
- Воронин В. Г., Наний О. Е. Основы нелинейной волоконной оптики: учебное пособие. М.: Университетская книга, 2011. 128 c. ISBN: 978-5-91304-212-5
- Cheng, J. L., Vermeulen, N., and Sipe, J. E. Third Order Optical Nonlinearity of Graphene // New J. Phys. 2014. Vol. 16. P. 053014. DOI: 10.1088/1367-2630/16/5/053014
- Mikhailov, S. A. Quantum Theory of the Third-Harmonic Generation in Graphene // Physical Review B. 2014. Vol. 90. No. 24. P. 241301. DOI: 10.1103/PhysRevB.90.241301
- Cheng, J. L., Vermeulen, N., Sipe, J. E. Third Order Nonlinearity of Graphene: Effects of Phenomenological Relaxation and Finite Temperature // Phys. Rev. B. 2015 Vol. 91. No. 23 P. 235320. DOI: 10.1103/PhysRevB.91.235320
- Pitilakis, A., Chatzidimitriou, D., Kriezis, E. E. Theoretical and Numerical Modeling of Linear and Nonlinear Propagation in Graphene Waveguides // Opt Quant Electron. 2016. Vol. 48. P. 243. DOI: 10.1007/s11082-016-0510-5
- Shareef, S., Ang, Y.S., Zhang, C. Room-Temperature Strong Terahertz Photon Mixing in Graphene // J. Opt. Soc. Am. B: Opt. Phys. 2012. Vol. 29. No. 3. P. 274. DOI: 10.1364/JOSAB.29.000274
- Ghayoor, R., Keshavarz, A. Transmission Properties of the Periodic Structures Based on Graphene Nonlinear Optical Conductivity in a Terahertz Field // International Journal of Optics and Photonics. 2019. Vol. 13. No. 1. P. 35 – 42. DOI: 10.29252/Ijop.13.1.35.
- Smirnova, D. A., Shadrivov, I. V., Kivshar, Y. S., and Smirnov, A. I. Dissipative Plasmon-Solitons in Multilayer Graphene // Laser &Photonics Reviews. 2014. Vol. 8. No. 2. P. 291 – 296. DOI: 10.1002/Lpor.201300173
- Gorbach, A.V. Nonlinear Graphene Plasmonics: Amplitude Equation // Phys. Rev. A. 2013. Vol. 87. No. 1. P. 013830. DOI: 10.1103/PhysRevA.87.013830
- Chatzidimitriou, D., Pitilakis, A., and Kriezis, E. E. Rigorous Calculation of Nonlinear Parameters in Graphene-Comprising Waveguides // J. AP. Phys. 2015. Vol. 118. No. 2. P. 023105. DOI: 10.1063/1.4926501
- Hanson, G. W. Dyadic Green’s Functions and Guided Surface Waves for a Surface Conductivity Model of Graphene // Journal of Applied Physics. 2008. Vol. 103. P. 064302. DOI: 10.1063/1.2891452
- Mikhailov, S. A. Quantum Theory of the Third-Order Nonlinear Electrodynamic Effects of Graphene // Physical Review B. 2016. Vol. 93. No. 8. P. 085403. DOI: 10.1103/PhysRevB.93.085403
- Savostianova, N. A., Mikhailov, S. A. Third Harmonic Generation From Graphene Lying on Different Substrates: Optical-Phonon Resonances and Interference Effects // Optics Express. 2017. Vol. 25. No. 4. P. 3268-3285. DOI: 10.1364/OE.25.003268
- Savostianova, N. A., Mikhailov, S. A. Giant Enhancement of the Third Harmonic in Graphene Integrated in a Layered Structure // Applied Physics Letters. 2015. Vol. 107. No. 18. P. 181104. DOI: 10.1063/1.4935041
- Xenogiannopoulou, E., Aloukos, P., Couris, S. et al. Third-Order Nonlinear Optical Properties of Thin Sputtered Gold Films // Optics Communications. 2007. Vol. 275. No. 1. P. 217-222. DOI: 10.1016/j.Optcom.2007.02.059
- Marini, A., Conforti, M., Della Valle, G. et al. Ultrafast Nonlinear Dynamics of Surface Plasmon Polaritons in Gold Nanowires Due to the Intrinsic Nonlinearity of Metals // New J. Phys. 2013. Vol. 15. No. 1. P. 013033. DOI: 10.1088/1367-2630/15/1/013033
- Hafez, H. A., Kovalev, S., Deinert, J.-C. et al. Room-Temperature THz High Harmonics Generation in Graphene // CLEO: QELS_Fundamental Science 2018. San Jose. California. United States. 13-18 May 2018. DOI: 10.1364/CLEO_AT.2018.JTh5A.3