Пономарев В.И. / Ponomaryov, V.I.
Национальный политехнический институт Мексики / National Polytechnic Institute of Mexico
Выпуск в базе РИНЦ
Пономарев В.И. Новый подход для фильтрации цветных изображений поврежденных смешанными шумами // Физические основы приборостроения. 2020. Т. 9. № 1(35). С. 55–63. DOI: 10.25210/jfop-2001-055063
Ponomaryov, V.I. Sparse Approach in Filtering of Color Images Corrupted by Mixture Noises // Physical Bases of Instrumentation. 2020. Vol. 9. No. 1(35). P. 55–63. DOI: 10.25210/jfop-2001-055063
Аннотация: Новый подход в фильтрации цветных изображений искаженных смешанным аддитивно-импульным шумом состоит из предварительного обнаружения случайных ипульсов, фильтрации их. В дальнейшем, для фильтрации аддитивного шума используется пространство Вэвлетов и дисперсное представление сигналов, а также трехмерная фильтрация. На заключительном этапе корректируются искажения, которые возникли на предыдущих этапах. Полученная процедура фильтрации была экспериментально исследована на основе объективных критериев (пиковое отношение сигнал-шум и оценка структурного индекса схожести). Результаты моделирования подтверждают эффективность новой процедуры, позволяющей еффективно подавлять шумы.
Abstract: A novel filtering approach is exposed for denoising of the color images contaminated by mixture of additive-impulsive noises. Proposed framework, first performs impulsive noise suppression via detecting pixels corrupted by impulsive noise, next, found spikes are reconstructed by a variant of median filter; to suppress additive noise novel filter is employed in Wavelet transform domain via a sparse representation and 3D-filtering; finally, at last step, the non-desirable secondary are processed correcting fine details. Evaluation of novel approach in denoising complex distortions has been performed using objective criteria (PSNR and SSIM measures) and subjective perception via human visual system confirming their better performance in comparison with state-of-the-art techniques.
Ключевые слова: цветное изображение, дисперсное представление, аддитивно-импульсный шум, трехмерная фильтрация, denoising, color image, sparse representation, 3D filtering, additive-impulsive noise, цветное изображение
Литература / References
- Young, I., Gerbrands, J., and Vliet, L. Fundamentals of Image Processing. TU Delft, Faculty of Applied Physics, Pattern Recognition Group. 1995.
- Young, I. T.,. Gerbrands, J. J, and Van Vliet, L. J. Fundamentals of Image Processing (v.2.3). Delft University of Technology.2007.
- Jain, P., and Tyagi, V. Locally Adaptive Patch-Based Wavelet Domain Edge-Preserving Image Denoising // Information Sciences. 2015. Vol. 294 (10). P. 164-181. DOI: 10.1016/j.Ins.2014.09.060
- Pogrebnyak, O. And Lukin, V. Wiener Discrete Cosine Transform-Based Image Filtering. // J. Elect. Imag. 2912. Vol. 21(4):043020. DOI: 10.1117/1.JEI.21.4.043020
- Bahoura, M., and Ezzaidi H. FPGA-Implementation of Discrete Wavelet Transform with Application to Signal Denoising // Circ., Syst. Signal Proces. 2012. Vol. 31(3), P. 987-1015. DOI: 10.1007/s00034-011-9355-0
- Jin, Y., Jost, J., and Wang G. A New Nonlocal H 1 Model for Image Denoising // J. Math. Imaging and Vision. 2014. Vol. 48 (1). P. 93-105. DOI: 10.1007/s10851-012-0395-2
- Buades, A., and Coll, B. A Non-Local Algorithm for Image Denoising. // IEEE Computer Vision and Pattern Recognition Conference, CVPR 2005. 2005. Vol. 2. P. 60-85. DOI: 10.1109/CVPR.2005.38
- Dabov, K., Foi, Katkovnik, A. V., and Egiazarian, K. Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering. IEEE Trans. Image Proces. 2007. Vol. 16 (8), P. 2080-2095. DOI: 10.1109/TIP. 2007.901238
- Palacios-Enriquez A., and Ponomaryov. Image Denoising Using Block Matching and Discrete Cosine Transform with Edge Restoring // Proc. Of IEEE Conference. Conielecomp. 2016. P. 140-147. DOI: 10.1109/CONIELECOMP. 2016.7438566
- Melange, T., Nachtegael, M., Schulte, S., and Kerre, E. E. A Fuzzy Filter for the Removal of Random Impulse Noise in Image Sequences // Image and Vision Comput. 2011. Vol. 29(6), P. 407-419. DOI: 10.1016/j.Imavis.2011.01.005
- Ponomaryov, V. I., Montenegro-Monroy, H., Gallegos-Funes, F., Pogrebnyak, O., and Sadovnychiy, S. Fuzzy Color Video Filtering Technique for Sequences Corrupted by Additive Gaussian Noise // Neurocomp. 2015. Vol. 155, P. 225-246. DOI: 10.1016/j.Neucom.2014.12.025
- Rosales-Silva, A. J., Gallegos-Funes, F. J., and Ponomaryov, V. I. Fuzzy Directional (FD) Filter for Impulsive Noise Reduction in Colour Video Sequences // J. Visual Comm. And Image Represent. 2012. Vol. 23(1). P. 143-149. DOI: 10.1016/j.Jvcir.2011.09.007
- Lukac, R. Adaptive Vector Median Filtering // Pattern Recognition Letters. 2003. Vol. 24(12), P. 1889-1899. DOI: 10.1016/S0167-8655(03)00016-3
- Ng, P.E., Ma, K.K. A Switching Median Filter with Boundary Discriminative Noise Detection for Extremely Corrupted Images// IEEE Trans. Image Proces. 2006. Vol. 15 (6). P. 1506-1516. DOI: 10.1109/TIP. 2005.871129
- Xu, G., and Tan, J. A.Universal Impulse Noise Filter with an Impulse Detector and Nonlocal Means// Circuits, Systems, and Signal Proces. 2014. Vol. 33 (2). P. 421-435. DOI: 10.1007/s00034-013-9640-1
- Nasri, M., Saryazdi, S., and Nezamabadi-Pour, H. A Fast Adaptive Saltand Pepper Noise Reduction Method in Images // Circ., Systems, Signal Proces. 2013. Vol. 32 (4). P. 1839-1857. DOI: 10.1007/s00034-012-9546
- Veerakumar, T., K. Jagannath, R. P. Subudhi, B. N. And. Esakkirajan, S. Impulse Noise Removal Using Adaptive Radial Basis Function Interpolation // Circ., Syst. Signal Proces. 2016. P. 1-32. DOI: 10.1007/s00034-012-9546-3
- Zhang, Y., Tian, X., and Ren, P. An Adaptive Bilateral Filter Based Framework for Image Denoising // Neurocomp. 2014. Vol. 140. P. 299-316. DOI: 10.1016/j.Neucom.2014.03.008.
- Terol-Villalobos I. R., and Mendiola-Santibanez, J. D. Filtering of Mixed Gaussian and Impulsive Noise Using Morphological Contrast Detectors // IET Image Proces. 2014. Vol. 8(3). P. 131-141. DOI: 10.1049/Iet-Ipr.2012.0615
- Jiang, J., Zhang, L., and Yang, J. Mixed Noise Removal by Weighted Encoding with Sparse Nonlocal Regularization // IEEE Trans. Image Proces. 2014. Vol. 23 (6), P. 2651-2662. DOI: 10.1109/TIP. 2014.2317985
- Astola, J., Haavisto, P., and Neuvo, Y. Vector Median Filters // Proc. IEEE, 1990. Vol. 78 (4). P. 678-689. DOI: 10.1109/5.54807
- Bruckstein, A. M., Donoho, D. L., and Elad, M. From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images // SIAM Review. 2009. Vol. 51. No. 1. P. 34-81. DOI: 10.1137/060657704
- Lim, J.S. Two-Dimensional Signal and Image Processing. Prentice Hall. 1990.
- Malinski, L., Smolka, B. Fast Adaptive Switching Technique of Impulsive Noise Removal in Color Images //. Journal of Real-Time Image Proces. 2016. P. 1-22. DOI: 10.1007/s11554-016-0599-6
- Wang, Z., Bovik, A.C., Sheikh, H.R., and Simoncelli, E. P. Image Quality Assessment: From Error Visibility to Structural Similarity// IEEE Trans. Image Proces. 2004. Vol. 13 (4). P. 600-612. DOI: 10.1109/TIP. 2003.819861