3Д дисплеи без очков на основе проекторов и мобильных телефонов / Glassless 3D imaging systems based on projectors and mobile phones

Петров Н.И. / Petrov, N.I.
Научно-технологический центр уникального приборостроения РАН / Scientific and Technological Centre of Unique Instrumentation of RAS
Соколов Ю.М. / Sokolov, Yu.M.
Российский университет дружбы народов (РУДН) / Peoples Friendship University of Russia (RUDN University)
Хромов М.Н. / Khromov, M.N.
ВНИИФТРИ / VNIIFTRI
Выпуск в базе РИНЦ
Петров Н.И., Соколов Ю.М., Хромов М.Н. 3Д дисплеи без очков на основе проекторов и мобильных телефонов // Физические основы приборостроения. 2020. Т. 9. № 2(36). С. 60–73. DOI: 10.25210/jfop-2002-060073
Petrov, N.I., Sokolov, Yu.M., Khromov, M.N. Glassless 3D imaging systems based on projectors and mobile phones // Physical Bases of Instrumentation. 2020. Vol. 9. No. 2(36). P. 60–73. DOI: 10.25210/jfop-2002-060073


Аннотация: Разработана многовидовая система 3D-отображения изображений, включающая модули съемки трехмерных объектов, обработки изображений (создания файлов 3D-изображений) и оптический экран для воспроизводства 3D-изображений на основе интегральной технологии визуализации. Созданы большие экраны дисплея с использованием набора проекторов. Мульти-проекторная система используется для улучшения характеристик дисплея, таких как разрешение, глубина и угол обзора. Разработаны также 3D дисплеи на основе мобильных устройств. Файлы 3D-изображений созданы с использованием файлов глубины и 2D-изображений, снятых под разными углами обзора. Продемонстрированы 3D изображения с использованием набора Full HD проекторов и проекторов Ultra HD 4K. Показана возможность наблюдения скрытых объектов, расположенных за передним элементом, с использованием проекторов и смартфонов 4K Sony (разрешение 3840⤫2160), а также Samsung и LG (разрешение 2560⤫1440).
Abstract: A multi-view 3D display system which includes the modules of capturing three-dimensional objects, image processing (creation of 3D image files) and display screen for the 3D image displaying based on integral imaging technology has been developed. Large display screens using multi-projectors are created. Multi-projector system is used for improving the performance, such as viewing resolution, depth and viewing angle. 3D displays based on mobile devices are also developed. 3D image files are created using 2D + depth files and 2D images captured at different view angles. Large 3D images using Full HD multi-projectors and Ultra HD 4K projector are created. Images having the property of “looking around” an object are demonstrated using projectors and smartphones 4K Sony (resolution 3840⤫2160), Samsung and LG (resolution 2560⤫1440).
Ключевые слова: 3D-изображение, интегральное изображение, многопроекторный дисплей, мобильный 3D-дисплей, создание файла 3D-изображения, 3D display, 3D image, integral imaging, multi-projector display, mobile 3D display, 3D-изображение


Литература / References
  1. Hong, J., Kim, Y., Choi, H.J., Hahn, J., et.al. Three-Dimensional Display Technologies of Recent Interest: Principles, Status, and Issues // Applied Optics. 2011. Vol. 50. P. 87-115.
  2. Lueder, E. 3D Displays. UK: John Wiley & Sons, 2012. ISBN: 978-1-119-99151-9
  3. Jang, J. S., and Javidi, B. Real-Time All-Optical Three-Dimensional Integral Imaging Projector // Appl. Opt. 2002. Vol. 41. P. 4866-4869. DOI: 10.1364/AO.41.004866
  4. Liao, H., Iwahara, M., Hata, N., and Dohi, T. High-Quality Integral Videography Using a Multiprojector // Opt. Express. 2004. Vol. 12. P. 1067-1076. DOI: 10.1364/OPEX.12.001067
  5. Jang, J. S., and Javidi, B. Three-Dimensional Projection Integral Imaging Using Micro-Convex-Mirror Arrays // Opt. Express. 2004. Vol. 12(6). P. 1077 — 1083.
  6. Kim, Y., Park, S. G., Min, S. W., and Lee, B. Projection-Type Integral Imaging System Using Multiple Elemental Image Layers // Appl. Opt. 2011. Vol. 50. B18-B24. DOI: 10.1364/AO.50.000B18
  7. Jang, J. Y., Shin, D., Lee, B.G., and Kim, E. S. Multi-Projection Integral Imaging by Use of a Convex Mirror Array // Opt. Lett. 2014. Vol. 39. P. 2853-2856. DOI: 10.1364/OL.39.002853
  8. Takaki, Y., and Nago, N. Multi-Projection of Lenticular Displays to Construct a 256-View Super Multi-View Display // Opt. Express. 2010. Vol. 18(9). P. 8824-8835. DOI: 10.1364/OE.18.008824
  9. Takaki, Y., Takenaka, H., Morimoto, Y., Konuma, O., and Hirabayashi, K. Multi — View Display Module Employing MEMS Projector Array // Opt. Express. 2012. Vol. 20. P. 28257-28266. DOI: 10.1364/OE.20.028257
  10. Lee, J.H., Park, J., Nam, D., Choi, S.Y., Park, D.S., and Kim, C.Y. Optimal Projector Configuration Design for 300-Mpixel Multi-Projection 3D Display // Opt. Express. 2013. Vol. 21. P. 26820-26835. DOI: 10.1364/OE.21.026820
  11. Eldes, O., Aksit, K., and Urey, H. Multi-View Autostereoscopic Projection Display Using Rotatory Screen // Opt. Express. 2013. Vol. 21. P. 29043-29054. DOI: 10.1364/OE.21.029043
  12. Wang, Z., Wang, A., Wang, S., Ma, X., and Ming, H. Resolution-Enhanced Integral Imaging Using Two Micro-Lens Arrays with Different Focal Lengths for Capturing and Display // Opt. Express. 2015. Vol. 23. P. 28970-28977. DOI: 10.1364/OE.23.028970
  13. Moon, S., Park, S.G., Lee, C.K., Cho, J., Lee, S., and Lee, B. Computational Multi-Projection Display // Opt. Express. 2016. Vol. 24. P. 9025-9037. DOI: 10.1364/OE.24.009025
  14. Petrov, N.I., Sokolov, Y.M., Khromov, M.N., and Storozheva, A.L. Integral Imaging Multi-View 3D Display // Frontiers in Optics/Laser Science Conference (FiO/LS). 2017. Washington, USA, Paper JTu2A.107. DOI: 10.1364/FIO.2017.JTu2A.107
  15. Petrov, N.I., Khromov, M.N., and Sokolov, Y.M. Large-Screen Multi-View 3D Display // OSA Continuum. 2019. Vol. 2(9). P. 2601-2613. DOI: 10.1364/OSAC.2.002601
  16. Okaichi, N., Miura, M., Sasaki, H., Watanabe, H., Arai, J., Kawakita, M., Mishina, T. Continuous Combination of Viewing Zones in Integral Three-Dimensional Display Using Multiple Projectors // Opt. Eng. 2018. Vol. 57(6). P. 061611. DOI: 10.1117/1.OE.57.6.061611
  17. Kim, J., et al. Crosstalk-Reduced Dual-Mode Mobile 3D Display // J. Display Technol. 2015. Vol. 11. P. 97-103.
  18. Markman, A., Wang, J., and Javidi, B. Three-Dimensional Integral Imaging Displays Using a Quick-Response Encoded Elemental Image Array // Optica. 2014. Vol. 1(5), 332-335. DOI: 10.1364/OPTICA.1.000332
  19. Woods, A.J. Crosstalk in Stereoscopic Displays: a Review // J. Of Electronic Imaging. 2012. Vol. 21. P. 040902. DOI: 10.1117/1.JEI.21.4.040902
  20. Woods, A.J., Harris, C.R., Leggo, D.B., and Rourke, T.M. Characterizing and Reducing Crosstalk in Printed Anaglyph Stereoscopic 3D Images // 2013. Opt. Eng. 2013. Vol. 52. P. 043203. DOI: 10.1117/1.OE.52.4.043203
  21. Son, J.Y., Lee, B.R., Park, M.C., and Leportier, T. Crosstalk in Multiview 3-D Images // Proc. SPIE. 2015. Vol. 9495. Paper 94950P. DOI: 10.1117/12.2180110
  22. Algorri, J.F., Pozo, V.U., Sanchez-Pena, J. M., and Oton, J.M. An Autostereoscopic Device for Mobile Applications Based on a Liquid Crystal Microlens Array and an OLED Display // J. Display Technol. 2014. Vol. 10. P. 713-720. DOI: 10.1109/JDT.2014.2313143
  23. Lv, G.J., Zhao, B. C., Wu, F., and Wang, Q.H. Three-Dimensional Display with Optimized View Distribution // Opt. Eng. 2019. Vol. 58(2). P. 023108. DOI: 10.1117/1.OE.58.2.023108
  24. Petrov, N.I., and Petrova, G.N. Diffraction of Partially-Coherent Light Beams by Microlens Arrays // Opt. Express. 2017. Vol. 25(19), 22545-22564. DOI: 10.1364/OE.25.022545
  25. Petrov, N.I. Holographic Diffuser with Controlled Scattering Indicatrix // Comp. Opt. 2017. Vol. 41. P. 831-836. DOI: 10.18287/2412-6179-2017-41-6-831-836