Кобелев А. В. / Kobelev, A.V.
Московский государственный технический университет им. Н.Э. Баумана / Bauman Moscow State Technical University
Щукин С. И. / Shchukin, S.I.
Московский государственный технический университет им. Н.Э. Баумана / Bauman Moscow State Technical University
Выпуск в базе РИНЦ
Кобелев А. В., Щукин С. И. Антропоморфное управление протезом предплечья на основе электроимпедансной миографии // Физические основы приборостроения. 2019. Т. 8. № 4(34). С. 62–68. DOI: 10.25210/jfop-1904-062068
Kobelev, A.V., Shchukin, S.I. Antropomorphic Prothesis Control Based on Electric Impedance Myography // Physical Bases of Instrumentation. 2019. Vol. 8. No. 4(34). P. 62–68. DOI: 10.25210/jfop-1904-062068
Аннотация: Проведённые исследования показали, что совместное использование электроимпедансного и электромиографического сигналов, зарегистрированных с одной системы электродов, позволяет получить не только информацию о параметрах электрической активности мышцы, но и оценить степень её сокращения. В совокупности, представляется возможным организовывать антропоморфное управление, пропорциональное степени сокращения мышцы, с временными задержками не более, чем в организме, то есть порядка 100 мс. Экспериментально установлено отличие сигналов схвата-раскрытия кисти от ротации, которое позволяет реализовать управление этими движениями кисти и отличать их в реальном времени.
Abstract: Studies have shown that the combined use of electrical impedance and electromyographic signals recorded from one system of electrodes, allows to get not only information about the parameters of the electrical activity of the muscle, but also to assess the degree of its contraction. It seems possible to organize anthropomorphic control proportional to the degree of muscle contraction, with time delays of no more than in the body, that is, about 100 ms. The difference between the gripping-opening signals of the hand and rotation, which allows to control these hand movements and distinguish them in real time, has been experimentally established.
Ключевые слова: протез, антропоморфный, управление, electrical impedance, prosthesis, протез
Литература / References
- Петров В. Г., Замилацкий Ю. И., Буров Г. Н. и др. Технология изготовления протезов верхних конечностей. / Спб.: Гиппократ. 2008. 128с. ISBN: 5-8232-0260-1
- Славуцкий Я. Л. Физиологические аспекты биоэлектрического управления протезами / М.: Медицина, 1982. (288). C. 20.
- Almström, C., Herberts, P., and Körner, L. Experience with Swedish Multifunctional Prosthetic Hands Controlled by Pattern Recognition of Multiple Myoelectric Signals // International Orthopaedics. 1981. No. 1 (5). P. 15-21.
- Amsuess, S. et al. A Multi-Class Proportional Myocontrol Algorithm for Upper Limb Prosthesis Control: Validation in Real-Life Scenarios on Amputees // IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2014. No. 5 (23). P. 827-836.
- Amsüss, S. et al. Long Term Stability of Surface EMG Pattern Classification for Prosthetic Control IEEE. 2013. P. 3622-3625.
- Castellini, C., Van Der Smagt, P. Surface EMG in Advanced Hand Prosthetics // Biological Cybernetics. 2009. No. 1 (100). P. 35-47.
- Chappell, P.H. et al. Control of a Single Degree of Freedom Artificial Hand // Journal of Biomedical Engineering. 1987. No. 3 (9). P. 273-277.
- Cipriani, C. et al. Influence of the Weight Actions of the Hand Prosthesis on the Performance of Pattern Recognition Based Myoelectric Control: Preliminary Study IEEE. 2011. P. 1620-1623.
- Engdahl, S.M. et al. Surveying the Interest of Individuals with Upper Limb Loss in Novel Prosthetic Control Techniques // Journal of NeuroEngineering and Rehabilitation. 2015. P. 1-11.
- Englehart, K., and Hudgins, B. A Robust, Real-Time Control Scheme for Multifunction Myoelectric Control // IEEE Transactions on Biomedical Engineering. 2003. No. 7 (50). P. 848-854.
- Fougner, A. et al. Resolving the Limb Position Effect in Myoelectric Pattern Recognition // IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2011. No. 6 (19). P. 644-651.
- Fougner, A. et al. Control of Upper Limb Prostheses: Terminology and Proportional Myoelectric Control — a Review // IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2012. No. 5 (20). P. 663-677.
- Garcia, M.A.C., Baffa, O. Magnetic Fields From Skeletal Muscles: a Valuable Physiological Measurement? // Frontiers in Physiology. 2015. (6). P. 228.
- Hahne, J.M. et al. Simultaneous Control of Multiple Functions of Bionic Hand Prostheses: Performance and Robustness in End Users // Science Robotics. 2018. No. 3630 (3).
- Hahne, J.M., Graimann, B., and Muller, K.-R. Spatial Filtering for Robust Myoelectric Control // IEEE Transactions on Biomedical Engineering. 2012. No. 5 (59). P. 1436-1443.
- Hwang, H.-J., Hahne, J. M., and Müller, K.-R. Real-Time Robustness Evaluation of Regression Based Myoelectric Control Against Arm Position Change and Donning/Doffing // PloS One. 2017. No. 11 (12). P. e0186318.
- Jiang, N. et al. Myoelectric Control of Artificial Limbs — is There a Need to Change Focus? // IEEE Signal Processing Magazine. 2012. No. 5 (29). P. 150-152.
- Krasuk, G. et al. Upper Limb Functional Prosthesis Control System Via Analog Signal Microprocessor. 1987.
- Kyberd, P.J. et al. MARCUS: a Two Degree of Freedom Hand Prosthesis with Hierarchical Grip Control // IEEE Transactions on Rehabilitation Engineering. 1995. No. 1 (3). P. 70-76.
- Kyberd, P. J. et al. The ToMPAW Modular Prosthesis: a Platform for Research in Upper-Limb Prosthetics // JPO: Journal of Prosthetics and Orthotics. 2007. No. 1 (19). P. 15-21.
- Kyberd, P. J., Chappell P. H. The Southampton Hand: an Intelligent Myoelectric Prosthesis // Journal of Rehabilitation Research and Development. 1994. No. 4 (31). P. 326-334.
- Lovely, D. F. Signals and Signal Processing for Myoelectric Control Springer, 2004. P. 35-54.
- Miller, R. B. Response Time in Man-Computer Conversational Transactions 1968. P. 267-277.
- Muzumdar, A. Powered Upper Limb Prostheses: Control, Implementation and Clinical Application; 11 Tables / A. Muzumdar, Springer Science & Business Media, 2004.
- Nakamura, T. Impedance Characteristics and Data Processing for Analysis of Human Movement 2001.
- Nightingale, J. M. Microprocessor Control of an Artificial Arm // Journal of Microcomputer Applications. 1985. No. 2 (8). P. 167-173.
- Ohnishi, K., Weir, R. F., and Kuiken, T. A. Neural Machine Interfaces for Controlling Multifunctional Powered Upper-Limb Prostheses // Expert Review of Medical Devices. 2007. No. 1 (4). P. 43-53.
- Oskoei, M. A., Hu, H. Myoelectric Control Systems — a Survey // Biomedical Signal Processing and Control. 2007. No. 4 (2). P. 275-294.
- Parker, P., Englehart, K., and Hudgins, B. Myoelectric Signal Processing for Control of Powered Limb Prostheses // Journal of Electromyography and Kinesiology. 2006. No. 6 (16). P. 541-548.
- Peerdeman, B. et al. Myoelectric Forearm Prostheses: State of the Art From a User-Centered Perspective. // Journal of Rehabilitation Research & Development. 2011. No. 6 (48).
- Radmand A., Scheme E., Englehart K. High-Density Force Myography: a Possible Alternative for Upper-Limb Prosthetic Control // Journal of Rehabilitation Research & Development. 2016. No. 4 (53).
- Ramachandran, V. S., Hirstein, W. The Perception of Phantom Limbs. The DO Hebb Lecture. // Brain: a Journal of Neurology. 1998. No. 9 (121). P. 1603-1630.
- Rutkove, S. B. Electrical Impedance Myography: Background, Current State, and Future Directions // Muscle & Nerve. 2009. № December (40). P. 936-946.
- Sarillee, M. et al. Non-Invasive Techniques to Assess Muscle Fatigue Using Biosensors: a Review IEEE, 2014. P. 187-192.
- Sears, H.H., Shaperman, J. Proportional Myoelectric Hand Control: an Evaluation // American Journal of Physical Medicine & Rehabilitation. 1991. No. 1 (70). P. 20-28.
- Sherman, E.D. A Russian Bioelectric-Controlled Prosthesis: Report of a Research Team From the Rehabilitation Institute of Montreal // Canadian Medical Association Journal. 1964. No. 24 (91). P. 1268.
- Simon, A. M. et al. A Decision-Based Velocity Ramp for Minimizing the Effect of Misclassifications During Real-Time Pattern Recognition Control // IEEE Transactions on Biomedical Engineering. 2011. No. 8 (58). P. 2360-2368.
- Simon, A. M., Stern, K., and Hargrove, L. J. A Comparison of Proportional Control Methods for Pattern Recognition Control IEEE. 2011. P. 3354-3357.
- Spanias, J. A., Perreault, E. J., and Hargrove, L. J. Detection of and Compensation for EMG Disturbances for Powered Lower Limb Prosthesis Control // IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2015. No. 2 (24). P. 226-234.
- Wu, Y. et al. A Human-Machine Interface Using Electrical Impedance Tomography for Hand Prosthesis Control // IEEE Transactions on Biomedical Circuits and Systems. 2018. No. 6 (12). P. 1322-1333.
- Young, A. J. et al. Classification of Simultaneous Movements Using Surface EMG Pattern Recognition // IEEE Transactions on Biomedical Engineering. 2012. No. 5 (60). P. 1250-1258.
- Young, A. J. et al. A Comparison of the Real-Time Controllability of Pattern Recognition to Conventional Myoelectric Control for Discrete and Simultaneous Movements. // Journal of Neuroengineering and Rehabilitation. 2014. No. 1 (11). P. 5.
- Young, A. J., Hargrove, L. J., and Kuiken, T. A. The Effects of Electrode Size and Orientation on the Sensitivity of Myoelectric Pattern Recognition Systems to Electrode Shift // IEEE Transactions on Biomedical Engineering. 2011. No. 9 (58). P. 2537-2544.
- Zheng, Y. P. et al. Sonomyography: Monitoring Morphological Changes of Forearm Muscles in Actions with the Feasibility for the Control of Powered Prosthesis // Medical Engineering & Physics. 2006. No. 5 (28). P. 405-415.
- Ziegler-Graham, K. et al. Estimating the Prevalence of Limb Loss in the United States: 2005 to 2050 // Archives of Physical Medicine and Rehabilitation. 2008. No. 3 (89). P. 422-429.
- Liberating Technologies, Inc. [Электронный ресурс]. URL: https://www.liberatingtech.com/ (дата обращения: 10.10.2019).
- Motion Control, Inc. [Электронный ресурс]. URL: http://www.utaharm.com/ (дата обращения: 10.10.2019).
- Otto Bock Duderstadt, Germany [Электронный ресурс]. URL: https://www.ottobock.com/ (дата обращения: 10.10.2019).
- Steeper Group [Электронный ресурс]. URL: https://www.steepergroup.com/ (дата обращения: 10.10.2019).
- Össur Global [Электронный ресурс]. URL: https://www.ossur.com/ (дата обращения: 10.10.2019).
- Shanghai Kesheng Prosthese, Shanghai, China [Электронный ресурс]. URL: http://www.keshen.com/ (дата обращения: 10.10.2019).
- Coapt Complete Control [Электронный ресурс]. URL: http://coaptengineering.com (дата обращения: 07.10.2019).