Category Archives:

(Русский)

Архив номеров

Алгоритм оптимального посимвольного приема сигнальных конструкций на основе ортогональных сигналов и корректирующих кодов в недвоичных полях Галуа / Algorithm for Optimal Symbol-by-Symbol Decoding of Signal Constructions Based on Orthogonal Signals and Correction Codes in Non-Binary Galois Fields

Назаров Л.Е. / Nazarov, L.E.
Фрязинский филиал Института радиотехники и электроники им. В. А. Котельникова РАН / Kotelnikov Institute of Radio Engineering and Electronics RAS, Fryazino Branch
Выпуск в базе РИНЦ
Назаров Л.Е. Алгоритм оптимального посимвольного приема сигнальных конструкций на основе ортогональных сигналов и корректирующих кодов в недвоичных полях Галуа // Физические основы приборостроения. 2022. Т. 11. № 3(45). С. 44–49. DOI: 10.25210/jfop-2203-044049

Nazarov, L.E. Algorithm for Optimal Symbol-by-Symbol Decoding of Signal Constructions Based on Orthogonal Signals and Correction Codes in Non-Binary Galois Fields // Physical Bases of Instrumentation. 2022. Vol. 11. No. 3(45). P. 44–49. DOI: 10.25210/jfop-2203-044049


Аннотация: Дано описание алгоритма оптимального посимвольного приема сигнальных конструкций на основе ортогональных в усиленном смысле ансамблей сигналов и блоковых корректирующих кодов в недвоичных полях Галуа. Показано, что результирующая сложность разработанного алгоритма посимвольного приема определяется размерностью дуального кода, что обусловливает перспективность его применения для блоковых помехоустойчивых кодов с низкой избыточностью (с высокой кодовой скоростью). Произведено исследование вероятностных характеристик алгоритма посимвольного приема путем его моделирования для ряда рассматриваемых сигнальных конструкций на основе простых корректирующих кодов с проверкой на четность.

Abstract: The focus of this paper is directed towards the development and investigation of the characteristics of optimal symbol-by-symbol decoding algorithms for signal constructions based on orthogonal signals and on error-correcting codes in non-binary Galua fields. The result complexity of decoding algorithm is determined by dimension of dual codes in non-binary fields. The error-performances of the considered algorithm of symbol-by-symbol decoding are studied by simulation it for a row of signal constructions under consideration based on simple correction codes with parity checking.

Ключевые слова: поля Галуа, ортогональные сигналы, посимвольный прием, корректирующие коды, noise-immunity, non-binary Galua fields, orthogonal signals, symbol-by-symbol decoding, error-correcting codes, поля Галуа


Литература / References
  1. Зюко А. Г., Фалько А. И., Панфилов И. П., Банкет В. Л., Иващенко П. В. Помехоустойчивость и эффективность систем передачи информации. М.: Радио и связь, 1985. 272 с.
  2. Скляр Б. Цифровая связь. Теоретические основы и практическое применение. М.: Издательский дом “Вильямс”, 2003. 1104 c.
  3. Li, J., Lin, S., Abdel-Chaffar, K., Ryan, W.E., and Costello, D.J. Jr. LDPC Code Designs, Constructions, and Unification. Cambridge. University Press. United Kingdom, 2017. 248 p.
  4. Смольянинов В. М., Назаров Л. Е. Применение спектрального преобразования в базисе Уолша при оптимальном посимвольном приеме сигналов, основанных на линейных кодах // Радиотехника и электроника. 1997. Т. 42. № 10. С. 1214-1219.
  5. Назаров Л. Е., Батанов В. В. Исследование помехоустойчивости оптимального посимвольного приема фазоманипулированных сигналов с корректирующими кодами в недвоичных полях Галуа // Радиотехника и электроника. 2022. Т. 67. № 8. С. 782-787.
  6. Steiner, F., Bocherer, G., and Liva, G. Bit-Metric Decoding of Non-Binary LDPC Codes with Probabilistic Amplitude Shaping // IEEE Communications Letters. 2018. Vol. 22. Iss. 11. P. 2210-2213. DOI: 10.1109/LCOMM.2018.2870180
  7. Yeo, S., Park, I.-C. Improved Hard-Reliability Based Majority-Logic Decoding for Non-Binary LDPC Codes // IEEE Transactions on Information Theory. 2018. Vol. 64. Iss. 7. P. 5170-5178. DOI: 10.1109/LCOMM.2016.2623783
  8. Kaipa, K. An Improvement of the Asymptotic Elias Bound for Non-Binary Codes // IEEE Communications Letters. 2018. Vol. 22. Iss. 11. P. 2210-2213. DOI: 10.1109/TIT.2018.2806968
  9. Назаров Л. Е., Шишкин П. В. Алгоритмы посимвольного приема сигналов на основе кодов с проверкой в поле GF(2m) // Журнал радиоэлектроники. 2018. № 12.
  10. Смольянинов В. М., Назаров Л. Е. Оптимальный посимвольный прием сигналов, основанных на линейных кодах в полях GF(2m) // Радиотехника и электроника. 1999. Т. 44. № 7. С. 838-841.
  11. Назаров Л. Е., Шишкин П. В. Исследование помехоустойчивости алгоритма оптимального посимвольного приема сигналов, соответствующих кодам с проверкой на четность в недвоичных полях // Радиотехника и электроника. 2019. Т. 64. № 9. С. 910-915. DOI: 10.1134/S0033849419080138
  12. Назаров Л. Е. Помехоустойчивость оптимального посимвольного приема сигналов в недвоичных полях Галуа // Физические основы приборостроения. 2020. № 2. С. 10-15. DOI: 10.25210/jfop-2002-010015
  13. Ping, Li, Chan, S., and Yeng, K.L. Efficient Soft-in-Soft-Out Sub-Optimal Decoding Rule for Single Parity Check Codes // Electronic Letters. 1997. Vol. 33. Iss. 19. Р. 1614-1616. DOI: 10.1049/el:19971092
  14. Дунин-Барковский И.В., Смирнов Н. В. Теория вероятностей и математическая статистика в технике. М.: Гостехтеориздат, 1955. 556 с.

Аппаратно-программный комплекс для активного теплового контроля сотовых конструкций из полимерных композиционных материалов / Hardware and Software for Active Thermal Imaging of Honeycomb Structures Made of Polymer Composite Materials

Мачихин А.С. / Machikhin, A.S.
Научно-технологический центр уникального приборостроения Российской академии наук; Национальный исследовательский университет «Московский энергетический институт» / Scientific and Technological Center for Unique Instrumentation RAS; National Research University “Moscow Power Engineering Institute”
Русаков Д.Ю. / Rusakov, D.Yu.
АО «ОНПП «Технология» им. А. Г. Ромашина» / JSC Obninsk research and production enterprise “Technologiya”
Выпуск в базе РИНЦ
Мачихин А.С., Русаков Д.Ю. Аппаратно-программный комплекс для активного теплового контроля сотовых конструкций из полимерных композиционных материалов // Физические основы приборостроения. 2022. Т. 11. № 3(45). С. 50–55. DOI: 10.25210/jfop-2203-050055

Machikhin, A.S., Rusakov, D.Yu. Hardware and Software for Active Thermal Imaging of Honeycomb Structures Made of Polymer Composite Materials // Physical Bases of Instrumentation. 2022. Vol. 11. No. 3(45). P. 50–55. DOI: 10.25210/jfop-2203-050055


Аннотация: Рассмотрена задача неразрушающего контроля сотовых конструкций из полимерных композиционных материалов активным тепловым методом. Описан автоматизированный стенд, созданный для ее решения. Разработано программное обеспечение для цифровой обработки инфракрасных изображений и обнаружения дефектов типа расслоение и непроклей. Подтверждена эффективность разработанных аппаратно-программных средств. Приведены результаты их апробации на тестовых объектах и реальных деталях ракетно-космической техники.

Abstract: We address the problem of non-destructive testing of honeycomb structures made of polymer composite materials. We dveloped an automatic stand designed for active thermal testing and developed software for processing digital images and detecting defects such as delamination and disbound. Multiple experiments on the test samples and real parts confirmed the efficiency of the developed hardware and software.

Ключевые слова: сотовые конструкции, тепловой контроль, неразрушающий контроль, активный тепловой метод, термография, цифровая обработка изображений, Composite materials, honeycomb structures, thermal imaging, non-destructive testing, thermography, сотовые конструкции


Литература / References
  1. Przemysław, D., Pastuszak, A., and Muc, A. Application of Composite Materials in Modern Constructions // Key Engineering Materials. 2013. Vol. 542. P. 119-129. DOI: 10.4028/www.scientific.net/kem.542.119
  2. Васильев В.В., Протасов В.Д., Болотин В.В. и др.; под общ. ред. В.В. Васильева, Ю.М. Таранопольского. Композиционные материалы: справочник. М.: Машиностроение, 1990. 512 с.
  3. Rupani, S. V., Acharya, G., and Jani, S. S. Design, Modelling and Manufacturing Aspects of Honeycomb Sandwich Structures: a Review // International Journal of Scientific Development and Research. 2017.
  4. Михайлин Ю.А. Специальные полимерные композиционные материалы. СПБ.: Научные основы технологии, 2009. 526 с.
  5. Lianxiang Yang, Xin Xie, Nan Xu, and Xu Chen. Fast Non-Destructive Testing Under Dynamic Loading // Society of Photo-Optical Instrumentation Engineers. 2013. Vol. 7. DOI: 10.1117/2.1201310.005180
  6. Liu Yingtao, Guo Guangping, and Wen Lei. Infrared Thermographic Nondestructive Testing of Resin Accumulation Between Panel and Honeycomb Core // Smart Materials, Structures & NDT in Aerospace. 2011.
  7. Будадин О. Н., Потапов А. И., Колганов В. И. Троицкий-Марков Т.Е. Тепловой неразрушающий контроль изделий. М.: Наука, 2002. 473 с.
  8. Вавилов В.П. Инфракрасная термография и тепловой контроль. М.: Спектр, 2009. 544 с.
  9. Русаков Д. Ю., Скоморохов А. О. Способ анализа результатов активного теплового контроля изделий из полимерных композиционных материалов. // Патент RU 2649247. Выдан 27.03.2017.
  10. Rusakov, D., Skomorohov, A. Automation of Analysis of Thermographic Images in Diagnostics of Honeycomb Core Structure States // Knowledge E Life Sciences. 2017. P. 350-356.
  11. Хуанг Т. С. Быстрые алгоритмы в цифровой обработке изображений: Преобразования и медианные фильтры. М.: Радио и связь, 1984.
  12. Fernandes, R., Sylvain, G. Leblanc Parametric (Modified Least Squares) and Non-Parametric (Theil-Sen) Linear Regressions for Predicting Biophysical Parameters in the Presence of Measurement Errors // Remote Sensing of Environment. 2005. Vol. 95. Iss. 3. P. 303-316. DOI: 10.1016/j.Rse.2005.01.005
  13. Siegel, A.F. Robust Regression Using Repeated Medians // Biometrika. 1982. Vol. 69. Iss. 1. P. 242-244. DOI: 10.1093/Biomet/69.1.242
  14. Sang Yoon Park, Won Choi. 3 Production Control Effect on Composite Material Quality and Stability for Aerospace Usage // Advanced Composite Materials: Properties and Applications. 2017. P. 112-194. DOI: 10.1515/9783110574432-003
  15. Rusakov, D., Chernushin, V. Theoretical and Practical Justification of High-Precision of Defects in Multilayer Polymer Honeycomb Structures by the Honeycomb Filler Height Reduction Method // IOP Conference Series: Materials Science and Engineering. 2020. Vol. 1636. Iss. 1. P. 012019. DOI: 10.1088/1742-6596/1636/1/012019

Акустооптический метод измерения параметров фоточувствительных материалов / Acoustooptical Method for Measuring the Parameters of Photosensitive Materials

Агаев Э.А. / Agayev, E.A.
Национальная академия авиации Азербайджана / National Aviation Academy of Azerbaijan Airlines
Ахмедов Р.А. / Ahmadov, R.A.
Национальная академия авиации Азербайджана / National Aviation Academy of Azerbaijan Airlines
Гасанов А.Р. / Hasanov, A.R.
Национальная академия авиации Азербайджана / National Aviation Academy of Azerbaijan Airlines
Гасанов Р.А. / Hasanov, R.A.
Национальная академия авиации Азербайджана / National Aviation Academy of Azerbaijan Airlines
Садыхов М.В. / Sadikhov, M.V.
Национальная академия авиации Азербайджана / National Aviation Academy of Azerbaijan Airlines
Эйнуллаев В.С. / Eynullayev, V.S.
Национальная академия авиации Азербайджана / National Aviation Academy of Azerbaijan Airlines
Выпуск в базе РИНЦ
Агаев Э.А., Ахмедов Р.А., Гасанов А.Р., Гасанов Р.А., Садыхов М.В., Эйнуллаев В.С. Акустооптический метод измерения параметров фоточувствительных материалов // Физические основы приборостроения. 2022. Т. 11. № 3(45). С. 56–63. DOI: 10.25210/jfop-2203-056063

Agayev, E.A., Ahmadov, R.A., Hasanov, A.R., Hasanov, R.A., Sadikhov, M.V., Eynullayev, V.S. Acoustooptical Method for Measuring the Parameters of Photosensitive Materials // Physical Bases of Instrumentation. 2022. Vol. 11. No. 3(45). P. 56–63. DOI: 10.25210/jfop-2203-056063


Аннотация: Обоснована актуальность исследования инерционности фоточувствительных материалов, в том числе фотоприемников. Перечислены известные методы и средства для измерения быстродействия фотоприемников. Отмечено, что в большинстве случаев эффективность измерения инерционности фотоприемников непосредственно или косвенно связана с точностью формирования светового импульса с требуемыми длительностью и мощностью. Показано, что формирование светового импульса с требуемыми параметрами можно осуществить путем прямой модуляции тока накачки лазерного излучателя или же с помощью электрооптических модуляторов Маха-Цендера. Обсуждены недостатки этих методов. Предложено устройство, которое синтезировано на основе фотоупругого эффекта и формирует световой импульс для измерения параметров фотоприемников. Получены формулы для расчета параметров светового импульса. Установлены влияния параметров формирователя на результаты измерения. Доказано, что наибольшим влиянием обладает время пересечения оптического пучка упругим волновым пакетом. Показано, что при анализе результатов измерения влияние параметров формирователя легко может быть вычислено и учтено как приборная погрешность. Адекватность результатов теоретических исследований проверена численными расчетами по полученным формулам. Установленные положения подтверждены соответствующими экспериментами на лабораторном макете формирователя световых импульсов.

Abstract: The urgency of studying the inertia of photosensitive materials, including photodetectors, has been substantiated. The well-known methods and means for measuring the speed of photodetectors are listed. It is noted that in most cases the efficiency of measuring the inertia of photodetectors is directly or indirectly related to the accuracy of the formation of a light pulse with the required duration and power. It is shown that the formation of a light pulse with the required parameters can be carried out by direct modulation of the pump current of a laser emitter or by using electro-optical Mach-Zehnder modulators. The disadvantages of these methods are discussed. A device is proposed that is synthesized on the basis of the photoelastic effect and shapers a light pulse for measuring the parameters of photodetectors. Formulas for calculating the parameters of a light pulse are obtained. The influence of the shaper parameters on the measurement results has been established. It is proved that the time of crossing the optical beam by an elastic wave packet has the greatest influence. It is shown that when analyzing the measurement results, the influence of the shaper parameters can be easily calculated and taken into account as an instrumental error. The adequacy of the results of theoretical studies was verified by numerical calculations using the obtained formulas. The established positions are confirmed by the corresponding experiments on the laboratory model of the light pulse shaper.

Ключевые слова: фотоприемник, световой импульс, фотоупругий эффект, упругий волновой пакет, приборная погрешность, оптический пучок, inertia, photodetector, light pulse, photoelastic effect, elastic wave packet, instrumental error, фотоприемник


Литература / References
  1. Киес Р. Дж., Крузе П. В., Патли Э. Г. и др. Фотоприемники видимого и ИК диапазонов. Под ред. Р. Дж. Киеса: Пер. с англ. М.: Радио и связь, 1985. 328 с.
  2. Бычков С. Б., Волков И. В., Глазов А. И., Королёв И. С., Савкин К. Б., Хатырев Н. П. Метод измерения параметров быстродействия фотоприёмников // Измерительная техника. 2020. № 8. С. 36-42. DOI: 10.32446/0368-1025it.2020-8-36-42
  3. Mengke Wang, Shangjian Zhang, Yutong He, Zhao Liu, Xuyan Zhang, Heng Wang, Yangxue Ma, Bao Sun, Yali Zhang, Zhiyao Zhang, and Yong Liu. Self-Referenced Frequency Response Measurement of High-Speed Photodetectors Through Segmental up-Conversion Based on Low-Speed Photonic Sampling // Optics Express. 2019. Vol. 27. Iss. 26. P. 38250-38258 DOI: 10.1364/OE.382798
  4. Ложников В. Е., Дирочка А. И. Модуляционный метод измерения параметров фотоприемного устройства на длину волны 10,6 мкм в гетеродинном режиме // Прикладная физика. 2016. № 3. С. 51-57.
  5. Щербаков В. В., Солодков А. Ф., Задерновский А. А. Дисперсионные искажения сигнала в аналоговых волоконно-оптических линиях связи с прямой модуляцией интенсивности // ФОТОН-ЭКСПРЕС. 2016. Т. 129. № 1. С. 34-39.
  6. Афанасьев В. М., Пономарев Р. С. Электрооптические амплитудные модуляторы Маха-Цендера на основе ниобата лития, их модификации и форматы модуляции // Прикладная фотоника. 2017. Т. 4. № 4. С. 336-359. DOI: 10.15593/2411-4367/2017.04.08
  7. Балакший В. И., Парыгин В. И., Чирков Л. Е. Физические основы акустооптики. М.: Радио и связь, 1985. 280 с.
  8. Christopher C. Davis. Lasers and Electro-Optics. Cambridge University Press, 2014. 867 p.
  9. Lee, J.N., Van Der Lugt, A. Acousto-Optic Signal Processing and Computing // Proc. IEEE. 1989. Vol. 77. Iss. 10. Р. 158-192. DOI: 10.1109/5.40667
  10. Pierson, A., Philippe, C. Acousto-Optic Interaction Model with Mercury Halides (Hg2Cl2 and Hg2Br2) as AOTF Crystals // Proc. SPIE 11180, International Conference on Space Optics (ICSO). 2019. Т. 11180. P. 2196-2206. DOI: 10.1117/12.2536139
  11. Gasanov, A.R., Gasanov, R.A. Selection of Modulation Type in Acousto-Optic Delay Line with Direct Detection // Radioelectronics and Communications Systems. 2015. Vol. 58. P. 258-268. DOI: 10.3103/S0735272715060035
  12. Gasanov, A.R., Gasanov, R.A., Guseinov, A.G. et al. Phase Inverter with Split Load on Basis of Bragg Diffraction // Radioelectronics and Communications Systems. 2020. Vol. 63. P. 497-503. DOI: 10.3103/S073527272009004

Энергоэффективный акустооптический модулятор тарагерцевого излучения / Energy-Efficient Acoustoo-Optic Modulator of Terrahertz Radiation

Никитин П.А. / Nikitin, P.A.
Научно-технологический центр уникального приборостроения РАН; Национальный исследовательский университет «МЭИ» / Scientific and Technological Center for Unique Instrumentation RAS; National Research University “MPEI”
Выпуск в базе РИНЦ
Никитин П.А. Энергоэффективный акустооптический модулятор тарагерцевого излучения // Физические основы приборостроения. 2022. Т. 11. № 3(45). С. 64–71. DOI: 10.25210/jfop-2203-064071

Nikitin, P.A. Energy-Efficient Acoustoo-Optic Modulator of Terrahertz Radiation // Physical Bases of Instrumentation. 2022. Vol. 11. No. 3(45). P. 64–71. DOI: 10.25210/jfop-2203-064071


Аннотация: Одним из способов повышения энергоэффективности акустооптических устройств является использование ультразвуковых пучков с более высокой плотностью мощности. Однако уменьшение ширины ультразвуковых преобразователей приводит к нежелательным эффектам. В работе был использован альтернативный метод, заключающийся в использовании ультразвукового преобразователя с излучающей поверхностью, частично покрытой электродом. Установлено, что этот способ в несколько раз увеличивает энергетическую эффективность акустооптического модулятора терагерцевого излучения.

Abstract: One of the ways to increase the energy efficiency of acousto-optic devices is the use of ultrasonic beams with a higher power density. However, reducing the width of ultrasonic transducers leads to undesirable effects. An alternative method was used in the work: using an ultrasonic transducer with a radiating surface partially covered with an electrode. It has been established that this method increases the energy efficiency of the acousto-optic modulator of terahertz radiation by several times.

Ключевые слова: дифракция, терагерцевое излучение, сжиженный инертный газ, acousto-optic interaction, diffraction, terahertz radiation, дифракция


Литература / References
  1. Son, J.-H., Oh, S.J., and Cheon, H. Potential Clinical Applications of Terahertz Radiation // Journal of Applied Physics. 2019. Vol. 125. No. 19. P. 190901. DOI: 10.1063/1.5080205
  2. Hafez, H.A., Chai, X., Ibrahim, A., Mondal, S., Férachou, D., Ropagnol, X., and Ozaki, T.Intense Terahertz Radiation and Their Applications // Journal of Optics. 2016. Vol. 18. No. 9. P. 093004. DOI: 10.1088/2040-8978/18/9/093004
  3. Sarieddeen, H., Alouini, M.-S., Al-Naffouri, T.Y. An Overview of Signal Processing Techniques for Terahertz Communications // Proceedings of the IEEE. 2021. Vol. 109. No. 10. P. 1628-1665.
  4. Doktofsky, D., Rosenfeld, M., and Katz, O. Acousto Optic Imaging Beyond the Acoustic Diffraction Limit Using Speckle Decorrelation // Communications Physics. 2020. Vol. 3. No. 5. DOI: 10.1038/s42005-019-0267-9
  5. Leveque-Fort., S. Three-Dimensional Acousto-Optic Imaging in Biological Tissues with Parallel Signal Processing // Applied Optics. 2001. Vol. 40. No. 7. P. 1029-1036. DOI: 10.1364/AO.40.001029
  6. Korablev, O.I., Belyaev, D.A., Dobrolenskiy, Y.S., Trokhimovskiy, A.Y., and Kalinnikov, Y.K. Acousto-Optic Tunable Filter Spectrometers in Space Missions // Applied Optics. 2018. Vol. 57. No. 10. P. 103-119. DOI: 10.1364/AO.57.00C103
  7. Crane, R. L., Hart-Smith, J., and Newman, J. Nondestructive Inspection of Adhesive Bonded Joints // Adhesive Bonding. Woodhead Publishing. 2021. P. 215-256. DOI: 10.1016/B978-0-12-819954-1.00008-3
  8. Nikitin, P. A., Gerasimov, V. V., and Khasanov, I. S. Temperature Effects in an Acousto-Optic Modulator of Terahertz Radiation Based on Liquefied SF6 Gas // Materials. 2021. Vol. 14. No. 19. P. 5519. DOI: 10.3390/ma14195519
  9. Durr, W. Acousto-Optic Interaction in Gases and Liquid Bases in the Far Infrared // International Journal of Infrared and Millimeter Waves. 1986. Vol. 7. No. 10. P. 1537-1558. DOI: 10.1007/BF01010756
  10. Nikitin, P. A., Gerasimov, V. V. Optimal Design of an Ultrasound Transducer for Efficient Acousto-Optic Modulation of Terahertz Radiation // Materials. 2022. Vol. 15. No. 3. P. 1203. DOI: 10.3390/ma15031203
  11. Imano, K. Use of Energy Trapping Type Piezoelectric Transducer to Suppress Lateral Vibration in the Transducer // IEICE Electronics Express. 2019. Vol. 16. No. 20. P. 1-4. DOI: 10.1587/Elex.16.20190478
  12. Kubarev, V., Sozinov, G., Scheglov, M., Vodopyanov, A., Sidorov, A., Melnikov, A., and Veber, S. The Radiation Beamline of Novosibirsk Free-Electron Laser Facility Operating in Terahertz, Far-Infrared, and Mid-Infrared Ranges // IEEE Transactions on Terahertz Science and Technology. 2020. Vol. 10. No. 6. P. 634-646. DOI: 10.1109/TTHZ.2020.3010046
  13. Центр коллективного пользования Научно-технологического центра уникального приборостроения Российской академии наук: http://ckp.ntcup.ru

Двумерная задача электромагнитного рассеяния на линзе Микаэляна, два метода решения и особенности фокусировки / Two-Dimensional Problem of Electromagnetic Scattering by Mikaelian Lens, Two Methods of Solution, and Some Features of Focusing

Кушнерёв М. М. / Kushneryov, M.M.
Московский физико-технический институт (Национальный исследовательский университет) / Moscow Institute of Physics and Technology
Скобелев С. П. / Skobelev, S.P.
ПАО «Радиофизика»; Московский физико-технический институт (Национальный исследовательский университет) / PJSC “Radiophysica”; Moscow Institute of Physics and Technology
Выпуск в базе РИНЦ
Кушнерёв М. М., Скобелев С. П. Двумерная задача электромагнитного рассеяния на линзе Микаэляна, два метода решения и особенности фокусировки // Физические основы приборостроения. 2020. Т. 9. № 4(38). С. 38–47. DOI: 10.25210/jfop-2004-038047
Kushneryov, M.M., Skobelev, S.P. Two-Dimensional Problem of Electromagnetic Scattering by Mikaelian Lens, Two Methods of Solution, and Some Features of Focusing // Physical Bases of Instrumentation. 2020. Vol. 9. No. 4(38). P. 38–47. DOI: 10.25210/jfop-2004-038047


Аннотация: Рассмотрена двумерная задача рассеяния Е-поляризо-ванной плоской электромагнитной волны на линзе Микаэляна, включая ее обобщенную модификацию с фокусом, расположенным вне линзы на заданном расстоянии от ее поверхности. Задача решается численно с использованием гибридного проекционного метода и метода интегрального уравнения для напряженности электрического поля в линзе. Приводятся и обсуждаются новые результаты, касающиеся особенностей фокусировки поля линзой в зависимости от соотношений между ее параметрами, а также результаты сравнения эффективности двух методов, указанных выше.
Abstract: A two-dimensional problem of scattering of E-polarized plane electromagnetic wave by Mikaelian lens including its generalized modification with the focus located outside the lens at a specified distance from its surface is considered. The problem is solved numerically with use of the hybrid projection method and the method of integral equation for the electric field strength in the lens. A number of new results concerning the features of wave focusing by the lens at different relations between its parameters as well as comparison of effectiveness of the methods used in the analysis are presented and discussed.
Ключевые слова: неоднородная среда, рассеяние электромагнитных волн, линза Микаэляна, численные методы, dielectric cylinder, inhomogeneous media, electromagnetic wave scattering, Mikaelian lens, неоднородная среда


Литература / References
  1. Mikaelian, A.L. Self-Focusing Media with Variable Index of Refraction. // Progress in Optics XVII. North Holland. 1980. DOI: 10.1016/S0079-6638(08)70241-5
  2. Триандафилов Я. Р., Котляр В. В. Фотонно-кристалли-ческая линза Микаэляна // Компьютерная оптика. 2007. Т. 31. № 3. С. 27-31.
  3. Baghdasaryan, T., Geernaert, T., Thienpont, H., Berghmans, F. Photonic Crystal Mikaelian Lenses and Their Potential Use as Transverse Focusing Elements in Microstructured Fibers // IEEE Photonics Journal. 2013. Vol. 5. No. 4. P. 7100512. DOI: 10.1109/JPHOT.2013.2274763
  4. Bor, J., Fuchs, B., Lafond, O., Himdi M. Flat Foam-Based Mikaelian Lens Antenna for Millimeter Wave Applications // Proc. Of the 44th European Microwave Conference. Rome, Italy, 6-9 Oct. 2014. P. 1640-1643. DOI: 10.1109/EuMC.2014.6986768
  5. Фельд Я. Н., Бененсон Л. С. Антенно-фидерные устройства. Ч. 2. М.: Изд. ВВИА им. проф. Н. Е. Жуковского, 1959.
  6. Зелкин Е. Г., Петрова Р. А. Линзовые антенны. М.: Советское радио, 1974.
  7. Некрасова Е. С., Скобелев С. П. Модификация гибридного проекционного метода для электродинамического анализа неоднородного диэлектрического цилиндра произвольного поперечного сечения // Радиотехника. 2017. № 10. С. 35-42.
  8. Richmond, J. H. Scattering by a Dielectric Cylinder of Arbitrary Cross Section Shape // IEEE Trans. Antennas Propagat. 1965. Vol. AP- 13. No. 3. P. 334-341. DOI: 10.1109/TAP. 1965.1138427

Деление и мультиплексирование сигнала в терагерцовом диапазоне / Signal Division and Multiplexing in the Terahertz Range

Айвазян М. Ц. / Ayvazyan, M.Ts.
Национальный политехнический университет Армении / National Polytechnic University of Armenia
Выпуск в базе РИНЦ
Айвазян М. Ц. Деление и мультиплексирование сигнала в терагерцовом диапазоне // Физические основы приборостроения. 2020. Т. 9. № 4(38). С. 48–53. DOI: 10.25210/jfop-2004-048053
Ayvazyan, M.Ts. Signal Division and Multiplexing in the Terahertz Range // Physical Bases of Instrumentation. 2020. Vol. 9. No. 4(38). P. 48–53. DOI: 10.25210/jfop-2004-048053


Аннотация: Рассмотрены способы деления сигнала в волноводных устройствах терагерцового диапазона. Известные делители построены на основе сверхразмерных волноводов в виде волноводного тройника либо волноводного креста. Если в диагонали такого креста установить полупрозрачную диэлектрическую пленку или решетку, состоящую из параллельных проводников, то часть мощности будет отводится решеткой (пленкой) в боковой канал. Величина отводимой мощности в случае применения диэлектрической пленки зависит от поляризации падающей волны, его частоты, а также от диэлектрической проницаемости материала диэлектрика и его толщины. В случае решетки уровень отводимой мощности зависит от ориентации проводников решетки, коэффициента заполнения и частоты. Зависимость коэффициентов отражения и прохождения волн от частоты является существенным недостатком таких делителей. Эта характеристика оказывается решающей в случае применения этих делителей для мультиплексирования сигналов. В работе предлагается широкополосный делитель новой конструкции. Делитель выполнен в виде волноводного тройника, который образован двумя состыкованными сверхразмерными квазиоптическими уголками, выполненными на основе металлодиэлектрического волновода квадратного сечения. Общая стенка состыкованных уголков удалена, полученный волновод увеличенного сечения сужается при помощи плавного перехода до размера основного волновода, а квазиоптические зеркала волноводных уголков образуют призму. Проведен расчет потерь сигнала в предлагаемом делителе. Показано, что характеристики разработанного делителя не зависят от частоты и поляризации сигнала. Работа такого устройства подчиняется принципу взаимности. Поэтому, такое устройство позволяет осуществлять мультиплексирование сигнала. Полученные расчетные значения потерь хорошо согласуются с экспериментальными результатами.
Abstract: The methods of signal division in waveguide devices of the terahertz range are considered. There are known dividers which are built on the basis of oversized waveguides in the form of a waveguide tee or waveguide cross. If a dielectric film or a grating consisting of parallel conductors is installed in the diagonal of such cross, the part of the power will be transferred by the grating (film) to the side channel. The magnitude of the power output in the case of applying a dielectric film depends on the polarization of the wave, its frequency, as well as on the dielectric constant of the dielectric material and its thickness. In the case of a grating, the level of power output depends on the orientation of the grating conductors, fill factor and frequency. The dependence of the reflection and transmission coefficients of the waves from the frequency is a significant drawback of such dividers. This characteristic is decisive in the case of using these dividers for signal multiplexing. In this paper, a new design broadband divider is proposed. The divider is made in the form of a waveguide tee, which is formed by two stacked oversized quasi-optical corners made on the basis of a metal-dielectric square waveguide. The common wall of the joined corners is removed, the resulting waveguide of increased cross section is narrowed by a smooth transition to the size of the main waveguide, and the quasi-optical mirrors of the waveguide corners form a prism. The calculation of the signal loss in the proposed divider is done. It is shown that the characteristics of the developed divider are independent of the frequency and polarization of the signal. The operation of such device is subject to the principle of reciprocity. Therefore, such device can be used for multiplexing the signal. The calculated losses are in good agreement with experimental results.
Ключевые слова: металлодиэлектрический волновод, уголок, диэлектрическая пленка, решетка, делитель мощности, мультиплексор, terahertz range, metal-dielectric waveguide, corner, dielectric film, grating, power divider, металлодиэлектрический волновод


Литература / References
  1. Борн М., Вольф Э. Основы оптики. Пер. с англ. М.: Наука, 1973. 720 c.
  2. Костенко А.А., Хлопов Г.И. Исследование крестообразного разветвления квазиоптических волноводов // Квазиоптическая техника миллиметровых и субмиллиметровых диапазонов волн: Сб. научн. тр. / Ин-т радиофизики и электроники НАН Украины – Харьков. 1989. С. 83-88.
  3. Нефедов Е.И., Сивов А.Н. Электродинамика периодических структур. М.: Наука, 1977. 208 с.
  4. Шестопалов В.П., Литвиненко Л.Н., Масалов С.А., Сологуб В.Г. Дифракция волн на решетках. Харьков: Изд-во ХГУ, 1973. 272 с.
  5. Kostenko, А.А. And Khlopov, G.I. Quasioptical Combiner with One Dimensional Diffraction Gratings // Telecommunications and Radioengineering. 1998. Vol. 55. No 4. P. 45-50. DOI: 10.1615/TelecomRadEng.v52.i11.100
  6. Шаров Г.А. Волноводные устройства сантиметровых и миллиметровых волн. М.: Горячая линия – Телеком, 2016. 639 с.
  7. Айвазян М.Ц., Мартиросян Р.М., Казанцев Ю.Н. Направляющие системы для терагерцового диапазона // Физические основы приборостроения. 2016. Т. 5. № 1. С. 28-35.
  8. Ayvazyan, M.Ts. The Metal Dielectric Waveguides in the Terahertz Range // Proceedings of IEEE 9th International Symposium (MSMW’2016), June 20-24, 2016: Kharkiv. Ukraine. P. 1-3. DOI: 10.1109/MSMW.2016.7538115
  9. Айвазян М.Ц. Направляющие системы для передачи больших мощностей в терагерцовом диапазоне // Известия НАН РА и НПУА. Серия «Технические науки». 2016. Т. 69. № 2. С. 151 – 160.
  10. Каценеленбаум Б.З. Теория нерегулярных волноводов с медленно меняющимися параметрами. М.: Изд. АН СССР, 1961. 216 с.
  11. Мериакри В.В., Матвеев Р.Ф., Ваганов Р.Б. Многоволновые волноводы со случайными нерегулярностями. М.: Сов. радио, 1972. 162 с.
  12. Ayvazyan, M.Ts., Babayan, A. S., Grigoryan, L.N. MIMO OFDM DOa Estimation Algorithm Implementation and Validation Using SDR Platform // Journal of Communications Software and Systems. 2019. Vol. 15. № 1. P. 1 – 8. DOI: 10.24138/Jcomss.v15i1.618

Разработка метода коррекции металлических артефактов при томографических исследованиях / Development of a Method for Correcting Metal Artifacts in Tomographic Studies

Бессонов В. Б. / Bessonov, V.B.
СПбГЭТУ «ЛЭТИ» / State Electrotechnical University “LETI”
Клонов В. В. / Klonov, V.V.
СПбГЭТУ «ЛЭТИ» / State Electrotechnical University “LETI”
Ларионов И. А. / Larionov, I.A.
СПбГЭТУ «ЛЭТИ» / State Electrotechnical University “LETI”
Староверов Н. Е. / Staroverov, N.E.
СПбГЭТУ «ЛЭТИ» / State Electrotechnical University “LETI”
Выпуск в базе РИНЦ
Бессонов В. Б., Клонов В. В., Ларионов И. А., Староверов Н. Е. Разработка метода коррекции металлических артефактов при томографических исследованиях // Физические основы приборостроения. 2020. Т. 9. № 4(38). С. 54–59. DOI: 10.25210/jfop-2004-054059
Bessonov, V.B., Klonov, V.V., Larionov, I.A., Staroverov, N.E. Development of a Method for Correcting Metal Artifacts in Tomographic Studies // Physical Bases of Instrumentation. 2020. Vol. 9. No. 4(38). P. 54–59. DOI: 10.25210/jfop-2004-054059


Аннотация: На современном этапе развития техники и технологий рентгеновская компьютерная томография является одной из широко распространенных методик контроля внутреннего строения различного рода объектов. При проведении томографического исследования в силу ряда причин возможно появление посторонней информации об объекте в виде артефактов. В работе предлагается метод коррекции одного из типов возникающих при томографии артефактов – металлических артефактов. Разработанный метод позволяет уменьшить большинство артефактов и сохранить большое количество оригинальных деталей. Результаты моделирования эксперимента показали, что метод может значительно уменьшить влияние металлических артефактов.
Abstract: At the present stage of technology development X-ray computed tomography is one of the most widely used methods for monitoring the internal structure of various types of objects. When performing a tomographic examination, for a number of reasons, extraneous information about the object may appear in the form of artifacts. The paper proposes a method for correcting one of the types of artifacts arising from tomography – metal artifacts. The developed method allows reducing the majority of artifacts and save a large number of original parts. The results of the experiment simulation showed that the method could significantly reduce metal artifacts.
Ключевые слова: коррекция, компьютерная томография, metal artifact, correction, коррекция


Литература / References
  1. Obodovskiy, A. V., Klonov, V. V., Larionov I. A. About Modernization of the x-Ray System for Tomographic Researches // AIP Conference Proceedings. AIP Publishing LLC. 2019. Vol. 2089. No. 1. P. 020014. DOI: 10.1063/1.5095743
  2. Staroverov, N. E. et al. Research of the Possibility of Using Neural Networks to Identify Areas of Interest in Tomographic Data // AIP Conference Proceedings. AIP Publishing LLC. 2020. Vol. 2250. No. 1. P. 020027. DOI: 10.1063/5.0013424
  3. Бессонов В. Б., Ларионов И. А., Ободовский А. В. Особенности разработки программно-аппаратных комплексов для микрофокусной рентгеновской компьютерной томографии // Физические основы приборостроения. 2019. Т. 8. № 4. С. 23-33. DOI: 10.25210/Jfop-1904-023033
  4. Bessonov, V. B. et al. An Investigation of Radiation Instability on Reconstruction Quality in Tomography // Journal of Physics: Conference Series (см. в книгах). – Institute of Physics and IOP Publishing Limited. 2017. Vol. 872. P. 012054-012054. DOI: 10.1088/1742-6596/872/1/012054
  5. Bessonov, V. B., Kislov, A. Correction of Ring Artifacts During Tomographic Reconstruction // AIP Conference Proceedings. AIP Publishing LLC. 2020. Vol. 2250. No. 1. P. 020005. DOI: 10.1063/5.0020741
  6. Obodovskiy, A. V., Bessonov, V. B., Larionov I. A. Temperature Deflection of the Anode Part of x-Ray Tube with Imposition Anode During Tomography // AIP Conference Proceedings. AIP Publishing LLC. 2019. Vol. 2089. No. 1. P. 020015. DOI: 10.1063/1.5095744
  7. Obodovskiy, A. V., Bessonov, V. B., Larionov, I. A. Features of the Practical Application of Microfocus x-Ray Tomograph in Biomedical Engineering // AIP Conference Proceedings. AIP Publishing LLC. 2019. Vol. 2140. No. 1. P. 020049. DOI: 10.1063/1.5121974
  8. Otsu, N. A Threshold Selection Method From Gray-Level Histograms // IEEE Trans. Systems, Man and Cybernetics. 1979. Vol. 9. No. 1. P. 62-66.
  9. Грязнов А. Ю. и др. Метод повышения резкости и контрастности деталей рентгеновских изображений // Физические основы приборостроения. 2019. Т. 8. №. 4. С. 34-37. DOI: 10.25210/Jfop-1904-034037

Разработка алгоритма поиска дефектов на томографических срезах для исследования композитных материалов методом микрофокусной томографии / Development of an Algorithm for Finding Defects on Tomographic Slices for Studying Composite Materials by Microfocus Tomography

Бессонов В. Б. / Bessonov, V.B.
Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» имени В. И. Ульянова (Ленина) / State Electrotechnical University “LETI”
Грязнов А. Ю. / Gryaznov, A.Y.
Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» имени В. И. Ульянова (Ленина) / State Electrotechnical University “LETI”
Ларионов И. А. / Larionov, I.A.
Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» имени В. И. Ульянова (Ленина) / State Electrotechnical University “LETI”
Осокин В. М. / Osokin, V.M.
Пермский национальный исследовательский политехнический университет / Perm National Research Polytechnic University
Староверов Н. Е. / Staroverov, N.E.
Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» имени В. И. Ульянова (Ленина) / State Electrotechnical University “LETI”
Холопова Е. Д. / Kholopowa, E.D.
Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» имени В. И. Ульянова (Ленина) / State Electrotechnical University “LETI”
Выпуск в базе РИНЦ
Бессонов В. Б., Грязнов А. Ю., Ларионов И. А., Осокин В. М., Староверов Н. Е., Холопова Е. Д. Разработка алгоритма поиска дефектов на томографических срезах для исследования композитных материалов методом микрофокусной томографии // Физические основы приборостроения. 2020. Т. 9. № 4(38). С. 60–63. DOI: 10.25210/jfop-2004-060063
Bessonov, V.B., Gryaznov, A.Y., Larionov, I.A., Osokin, V.M., Staroverov, N.E., Kholopowa, E.D. Development of an Algorithm for Finding Defects on Tomographic Slices for Studying Composite Materials by Microfocus Tomography // Physical Bases of Instrumentation. 2020. Vol. 9. No. 4(38). P. 60–63. DOI: 10.25210/jfop-2004-060063


Аннотация: Полимерные композиционные материалы (ПКМ) ввиду своих качеств все шире применяются в современной промышленности, в том числе в авиационной технике. Важной задачей при производстве изделий из композитов является контроль качества выпускаемых изделий, который может быть проведен с помощью метода микрофокусной рентгеновской томографии. В работе рассматривается результат томографического исследования изделия из ПКМ. Предложен алгоритм для обнаружения дефектов на получаемых томографических срезах на основе метода сегментации и морфологической обработки. Предложенный метод был программно реализован и продемонстрировал свою работоспособность.
Abstract: Polymer composite materials (PCM) due to their qualities are increasingly used in modern industry, including in aviation technology. An important task in the production of composite products is to control the quality of manufactured products, which can be carried out using the method of microfocus x-ray tomography. The results of a tomographic examination of a PCM product are considered in the paper. An algorithm for detecting defects on the resulting tomographic sections based on the segmentation and morphological processing method is proposed. The proposed method was implemented programmatically and demonstrated its efficiency.
Ключевые слова: дефекты, томографические срезы, composite materials, defects, дефекты


Литература / References
  1. Anoshkin, A. N. et al. Application of Operational Radiographic Inspection Method for Flaw Detection of Blade Straightener From Polymeric Composite Materials // Journal of Physics: Conference Series. IOP Publishing. 2017. Vol. 808. No. 1. P. 012003. DOI: 10.1088/1742-6596/808/1/012003
  2. Anoshkin, A. N. et al. Experimental Research of the Detecting Capabilities for Defects in Composite Structures Using Various Non-Destructive Testing Methods // AIP Conference Proceedings. AIP Publishing LLC. 2019. Vol. 2089. No. 1. P. 020001. DOI: 10.1063/1.5095730
  3. Bessonov, V. B. et al. About Possibility of Detecting Micron-Size Defects in Layered Structures Using the Method of Microfocus Tomography // Journal of Physics: Conference Series. IOP Publishing. 2017. Vol. 872. No. 1. P. 012036. DOI: 10.1088/1742-6596/872/1/012036
  4. Staroverov, N. E., Kholopova, E. D., Gryaznov, A. Yu., Zhamova, K. K. Development of Digital Processing Method of Microfocus X-Ray Images // Journal of Physics: Conference Series. 2017. Vol. 808. No. 1. P. 1-4. DOI: 10.1088/1742-6596/808/1/012001
  5. Staroverov, N. E. et al. Recognition of Certain Types of Pathologies on Medical x-Ray Images // AIP Conference Proceedings. AIP Publishing LLC. 2019. Vol. 2140. No. 1. P. 020076. DOI: 10.1063/1.5122001
  6. Staroverov, N. E. et al. New Methods for Digital Processing of Microfocus X-Ray Images // Biomedical Engineering. 2019. Vol. 52. No. 6. P. 435-438. DOI: 10.1007/s10527-019-09864-6
  7. Otsu, N. A Threshold Selection Method From Gray-Level Histograms // IEEE Trans. Systems, Man and Cybernetics. 1979. Vol. 9. No. 1. P. 62-66.
  8. Vincent, L. Morphological Grayscale Reconstructions in Image Analysis: Applications and Efficient Algorithms // IEEE Trans. Of Image Processing. 1993. Vol. 2. No. 2. P. 176-201. DOI: 10.1109/83.217222

Построение и функционирование трехканального фурье-спектрометра / Construction and Operation of a Three-Channel Fourier Spectrometer

Вагин В. А. / Vaguine, V.A.
Научно-технологический центр уникального приборостроения РАН / Scientific and Technological Center for Unique Instrumentation RAS
Хорохорин А. И. / Khorokhorin, A.I.
Научно-технологический центр уникального приборостроения РАН / Scientific and Technological Center for Unique Instrumentation RAS
Выпуск в базе РИНЦ
Вагин В. А., Хорохорин А. И. Построение и функционирование трехканального фурье-спектрометра // Физические основы приборостроения. 2020. Т. 9. № 4(38). С. 64–71. DOI: 10.25210/jfop-2004-064071
Vaguine, V.A., Khorokhorin, A.I. Construction and Operation of a Three-Channel Fourier Spectrometer // Physical Bases of Instrumentation. 2020. Vol. 9. No. 4(38). P. 64–71. DOI: 10.25210/jfop-2004-064071


Аннотация: Описан многоканальный (трехканальный) фурье-спектрометр. Рассмотрена его настройка и проведение измерений с помощью многоканального оптоволоконного зонда, позволяющего проводить одновременные измерения нарушенного полного внутреннего отражения в среднем ИК диапазоне и оптического пропускания в ближнем ИК диапазоне. Описано построение и функционирование оптико-механической и электронной частей прибора. Проведены испытания спектрометра в многоканальном режиме.
Abstract: A multichannel (three-channel) Fourier spectrometer is described. The construction and composition of opto-mechanical and electronic parts are considered. The electronic part of the device and the computer with the necessary software are integrated into the control, registration and spectral processing system. It provides simultaneous registration of three interferograms and further obtaining of spectra. Special attention is paid to the device of the original three-channel fiber-optic probe, allowing simultaneous measurements of the disturbed total internal reflection in the mid-IR range and optical transmission in the near-IR range. A number of spectra are presented that demonstrate the operation of the device in multi-channel mode.
Ключевые слова: многозондовая спектроскопия, многоканальные измерения, ИК спектроскопия, интерферометр, оптоволоконный зонд, инфракрасные спектры, Fourier spectrometer, multi-probe spectroscopy, multi-channel measurements, IR spectroscopy, interferometer, fiber-optic probe, многозондовая спектроскопия


Литература / References
  1. Вагин В. А., Хорохорин А. И., Система управления, регистрации и обработки спектральной информации многозондового ИК Фурье-спектрометра // Физические основы приборостроения. 2018. Т. 7. № 3 (29). С. 10-17. DOI: 10.25210/jfop-1803-008015
  2. Балашов А. А., Вагин В. А., Хорохорин А. И. Инфракрасный фурье-спектрометр ФСВ // Приборы и техника эксперимента. 2016. № 1. С. 158. DOI: 10.7868/S0032816216010304
  3. Балашов А. А., Вагин В. А., Хорохорин А. И. Фурье-спектрометр // Патент России. Полезная модель. Ru 157 021 U1 Опубликовано 20.11.2015 Бюл. № 32.
  4. Вагин В.А., Хорохорин А.И. Система регистрации интерферограмм в двухзондовом (двухканальном) фурье-спектрометре // Физические основы приборостроения. 2019. Т. 8. № 4(34). С. 11-15. DOI: 10.25210/jfop-1904-011015
  5. Смит А., Тарасевич Б. Н. Прикладная ИК-спектроскопия: Основы, техника, аналитическое применение: Пер. с англ. М.: Мир, 1982. 328 с.
  6. Харрик Н. Спектроскопия внутреннего отражения. М.: Мир, 1970. 336 с.
  7. Балашов А.А., Вагин В.А., Мошкин Б.Е., Хорохорин А.И. Спектрометры оптического диапазона, разрабатываемые в НТЦ УП РАН // Физические основы приборостроения. 2018. Т. 7. № 4(30). С. 42-47. DOI: 10.25210/jfop-1804-042047

Влияние неэквидистантности точек регистрации интерферограмм в фурье-спектрометре на получаемые спектры / Effect of Non-Equidistance of Interferogram Registration Points in a Fourier Spectrometer on the Obtained Spectra

Вагин В. А. / Vaguine, V.A.
Научно-технологический центр уникального приборостроения РАН / Scientific and Technological Center for Unique Instrumentation RAS
Хитров О. В. / Khitrov, O.V.
Научно-технологический центр уникального приборостроения РАН / Scientific and Technological Center for Unique Instrumentation RAS
Выпуск в базе РИНЦ
Вагин В. А., Хитров О. В. Влияние неэквидистантности точек регистрации интерферограмм в фурье-спектрометре на получаемые спектры // Физические основы приборостроения. 2020. Т. 9. № 4(38). С. 72–75. DOI: 10.25210/jfop-2004-072075
Vaguine, V.A., Khitrov, O.V. Effect of Non-Equidistance of Interferogram Registration Points in a Fourier Spectrometer on the Obtained Spectra // Physical Bases of Instrumentation. 2020. Vol. 9. No. 4(38). P. 72–75. DOI: 10.25210/jfop-2004-072075


Аннотация: Исследован один из видов ошибок (погрешностей) в определении оптической разности хода в регистрируемой интерферограмме, нарушающий эквидистантность точек ее регистрации. Рассматриваемые погрешности имеют периодический характер, обусловленный природой сигналов управляющих АЦП, вырабатываемых при прохождении референтного сигнала через нулевое значение. Такие погрешности приводят к появлению характерных духов в получаемых спектрах. Посредством математического моделирования проведены оценки требований к величине () этих погрешностей. Исследовано поведение духов, соответствующих разным частотам спектра. Рассчитаны зависимости их величин на выбранных частотах от .
Abstract: One of the types of errors in determining the optical path difference in the recorded interferogram, which violates the equidistance of its registration points, is investigated. The considered errors have a periodic character due to the nature of the control ADC signals generated when the reference signal passes through the zero value. Such errors lead to the appearance of characteristic spirits in the resulting spectra. By means of mathematical modeling, the requirements for the value () of these errors are estimated. The behavior of spirits corresponding to different frequencies of the spectrum is studied. The dependences of their values at the selected frequencies on are calculated.
Ключевые слова: эквидистантность, интерферограмма, шаг дискретизации, дух, Fourier spectrometer, equidistantly, interferogram, the sampling rate, эквидистантность


Литература / References
  1. Балашов А. А., Вагин В. А., Висковатых А. В., Жижин Г. Н., Пустовойт В. И., Хорохорин А. И. Аналитический Фурье-спектрометр АФ-1 широкого применения // ПТЭ. 2003. № 2. С. 87-89.
  2. Балашов А.А., Вагин В.А., Мошкин Б.Е., Хорохорин А.И. Спектрометры оптического диапазона, разрабатываемые в НТЦ УП РАН // Физические основы приборостроения. 2018. Т. 7. № 4(30). С. 42-47. DOI: 10.25210/jfop-1804-042047
  3. Вагин В. А., Хорохорин А. И. Система управления, регистрации и обработки спектральной информации многозондового ИК фурье-спектрометра // Физические основы приборостроения. 2018. Т. 7. № 3(29). С. 8-15. DOI: 10.25210/jfop-1803-008015
  4. Вагин В.А., Хорохорин А.И. Система регистрации интерферограмм в двухзондовом (двухканальном) фурье-спектрометре // Физические основы приборостроения. 2019. Т. 8. № 4(34). С. 11-15. DOI: 10.25210/jfop-1904-011015
  5. Вагин В.А., Хорохорин А.И. Система регистрации интерферограмм в двухзондовом (двухканальном) фурье-спектрометре. Часть 2 // Физические основы приборостроения. 2020. Т. 9. № 1(35). С. 100-107. DOI: 10.25210/jfop-2001-100107