Архив рубрики: ФОП.22.03

Макет фотометра яркости моря авиационного базирования и его испытания в полетах над морем / Set-up of an Aircraft-Based Sea Brightness Photometer and its Tests in Flights Over the Sea

Глебова Т.В. / Glebova, T.V.
Институт геохимии и аналитической химии им. В.И. Вернадского РАН / Vernadsky Institute of Geochemistry and Analytical Chemistry
Зевакин Е.А. / Zevakin, E.A.
Институт геохимии и аналитической химии им. В.И. Вернадского РАН / Vernadsky Institute of Geochemistry and Analytical Chemistry
Иванов С.Г. / Ivanov, S.G.
Институт геохимии и аналитической химии им. В.И. Вернадского РАН / Vernadsky Institute of Geochemistry and Analytical Chemistry
Каледин С.Б. / Kaledin, S.B.
Московский государственный технический университет им. Н.Э. Баумана / Bauman Moscow State Technical University
Носов В.Н. / Nosov, B.N.
Институт геохимии и аналитической химии им. В.И. Вернадского РАН / Vernadsky Institute of Geochemistry and Analytical Chemistry
Погонин В.И. / Pogonin, V.I.
Институт геохимии и аналитической химии им. В.И. Вернадского РАН / Vernadsky Institute of Geochemistry and Analytical Chemistry
Савин А.С. / Savin, A.S.
Московский государственный технический университет им. Н.Э. Баумана / Bauman Moscow State Technical University
Тимонин В.И. / Timonin, V.I.
Московский государственный технический университет им. Н.Э. Баумана / Bauman Moscow State Technical University
Выпуск в базе РИНЦ
Глебова Т.В., Зевакин Е.А., Иванов С.Г., Каледин С.Б., Носов В.Н., Погонин В.И., Савин А.С., Тимонин В.И. Макет фотометра яркости моря авиационного базирования и его испытания в полетах над морем // Физические основы приборостроения. 2022. Т. 11. № 3(45). С. 72–83. DOI: 10.25210/jfop-2203-072083

Glebova, T.V., Zevakin, E.A., Ivanov, S.G., Kaledin, S.B., Nosov, B.N., Pogonin, V.I., Savin, A.S., Timonin, V.I. Set-up of an Aircraft-Based Sea Brightness Photometer and its Tests in Flights Over the Sea // Physical Bases of Instrumentation. 2022. Vol. 11. No. 3(45). P. 72–83. DOI: 10.25210/jfop-2203-072083


Аннотация: Разработан и создан макет фотометра яркости моря, предназначенный для измерения оптических характеристик приповерхностных слоев морской среды с борта авиационного носителя. В оптической схеме макета фотометра используются два канала для регистрации яркости моря в двух диапазонах длин волн. Получена формула, связывающая отношение амплитуд измеряемых сигналов в каналах с «индексом цвета моря» и оптическими параметрами макета. Осуществлена калибровка макета, позволившая выполнить коррекцию измерений индекса цвета моря с учетом различной чувствительности каналов. Приведены результаты обработки данных, полученных с помощью этого макета в натурных морских исследованиях с борта самолета. Дано объяснение флуктуаций индекса цвета моря, зарегистрированных вдоль треков полета.

Abstract: A set-up of a photometer designed to measure the optical characteristics of the near-surface layers of the marine environment from an aircraft carrier has been developed and created. In the optical scheme of the photometer set-up, two channels are provided for highlighting the wave ranges on which the brightness of the sea is recorded. The dependence of the received signals on the sea color index and the optical parameters of the set-up is found. Calibration of the layout was carried out, which made it possible to correct the measurements of the sea color index taking into account the different sensitivity of the channels. The results of processing the data obtained using this set-up in full-scale marine studies from the aircraft are presented. The explanation of fluctuations of the sea color index recorded along the flight tracks is given.

Ключевые слова: фотометр яркости моря, авианоситель, индекс цвета моря, фитопланктон, remote measurements, sea brightness photometer, aircraft carrier, sea color index, фотометр яркости моря


Литература / References
  1. Иванов С. Г., Каледин С. Б., Носов В. Н., Савин А. С., Тимонин В. И., Глебова Т. В. Оценка радиусов кривизны поверхностных волн по измеренным амплитудам лазерно-бликовых сигналов в натурных экспериментах //Физические основы приборостроения. 2021. Т. 10. № 2(40). С. 74-80. DOI: 10.25210/jfop-2102-074080
  2. Оптика океана и атмосферы / под ред. К.С. Шифрина. М.: Наука, 1981. 230 с.
  3. Дегтярев В. И., Константинов О. Г., Нелепа А. А., Косте-нко И. П. Дифференциальный измеритель коэффициента спектральной яркости поверхности моря// Морские гидрофизические исследования. 1976. Т. 1 (72). С. 124-132.
  4. Матюшенко В. А., Пелевин В. Н., Ростовцева В. В. Измерение коэффициента яркости моря трехканальным спектрофотометром с борта НИС// Оптика атмосферы и океана. 1996.Т.9. № 5. С. 664-669.
  5. Ли М. Е., Мартынов О. В. Некоторые результаты исследований индекса цвета моря// Морские гидрофизические исследования. 1976.Т.1 (72). С. 133-138.
  6. Ефименко И. Д., Новиков В. С., Пелевин В. Н. Авиационный регистрирующий фотометр яркости моря// Световые поля в океане. М.: ИО АН СССР. 1979. С. 203-210.
  7. Пелевин В. Н., Пелевина М. А., Кельбалиханов Б. Ф. Исследование спектров выходящего из моря излучения с борта вертолета// Оптические методы изучения океанов и внутренних водоемов. Новосибирск, «Наука» Сиб. отд., 1979, С. 80-87.
  8. Неуймин Г. Г., Земляная Л. А., Мартынов О. В., Соловьев М. В. Оценка концентрации хлорофилла в различных районах мирового океана по измерению индекса цвета// Оптические методы изучения океанов и внутренних водоемов. Тезисы докл. АН СССР Комиссия по проблемам Мирового океана, АН ЭССР Ин-т термофизики и электорофизики АН ЭССР. Таллин, 1980, C.131-132.
  9. Гинзбург А. И., Костяной А. Г., Кривошея В. Г., Незлин Н. П., Соловьев Д. М., Станичный С. В., Якубенко В. Г. Особенности динамики вод и распределения хлорофилла “а” в северо-восточной части Черного моря осенью 1997 г // Океанология. 2000.Т.40. № 3. С. 344-356.
  10. Рогачев К. А., Шлык Н. В. 2013. Механизм формирования антициклонического вихря в Сахалинском заливе по спутниковым наблюдениям// Исследование Земли из космоса. 2013. Т. 5. С. 12-20.
  11. Интернет ресурс: http://dvs.net.ru/Optics/BlackSea/26_3.shtml
  12. Неуймин Г. Г., Соловьев М. В., Мартынов О. В. Некоторые результаты измерения индекса цвета вод различных районов мирового океана//Оптические методы изучения океанов и внутренних водоемов. Новосибирск, «Наука» Сибирское отд., 1979. С. 27-38.
  13. Буренков В. И., Гуревич И. Я., Копелевич О. В., Шифрин К. С. Спектры яркости выходящего излучения и их изменение с высотой наблюдения// Оптические методы изучения океанов и внутренних водоемов. Новосибирск, «Наука» Сибирское отд, 1979. C.41-58.
  14. Артемьев В. А., Буренков В. И., Возняк С. Б., Григорьев А. В., Дарецки М., Демидов А., Копелевич О. В., Французов О. Н., Храпко А. Н. Подспутниковые измерения цвета океана: натурный эксперимент в Черном и Эгейском морях// Океанология. 2000. 40. № 2: 192-198.
  15. Иванов С. Г., Носов В. Н., Погонин В. И., Зевакин Е. А., Савин А. С., Горелов А. М., Леонов С. О. Применение фотометра яркости для получения информации гидродинамических возмущений в морской среде// Актуальные направления развития прикладной математики в энергетике, энергоэффективности и информационно-коммуникационных технологиях: Сборник трудов Международной научной конференции. М.: МГТУ им. Баумана. 2010. С. 277-280.
  16. Иванов С. Г., Носов В. Н., Каледин С. Б., Плишкин А. Н., Погонин В. И., Леонов С. О., Молчанова Т. В., Зевакин Е. А. Исследование мелкомасштабной изменчивости приповерхностных слоев морской среды под действием гидродинамических возмущений с помощью фотометра яркости моря // Вестник МГТУ им. Н.Э. Баумана. Сер. «Естественные науки». 2014. Т. 5(56). С. 53-65.
  17. Носов В. Н., Иванов С. Г., Каледин С. Б., Тимонин В. И., Погонин В. И., Зевакин Е. А. Двухканальный фотометр яркости моря авиационного базирования для исследования приповерхностных слоев морской среды//Физическое и математическое моделирование процессов в геосредах: Седьмая Международная научная конференция-школа молодых ученых, 20-22 октября 2021 г., Москва: Материалы конференции. М.: ИПМех РАН, ISBN 978-5-91741-271-9. С. 254-257.
  18. Локационные лазерные системы видения/В.Е. Карасик, В.М. Орлов. М.: Изд-во МГТУ им. Н.Э. Баумана, 2013. 478 с.
  19. Аналитическая лазерная спектроскопия: пер с англ. / Под ред. Н. Оменетто. М.: Мир, 1982. 606 с.
  20. Интернет ресурс: https://regnum.ru/uploads/pictures/news/2017/06/02/regnum_picture_14963926597564510_normal.jpg
  21. Копелевич О. В., Вазюля С. В., Салинг И. В. Биооптические характеристики и солнечная радиация в поверхностном слое Баренцева моря/ Монография «Система Баренцева моря». Раздел 5.1. С. 230-245. М.: ГЕОС, 2021. 672 с. ISBN 978-5-89118-825-9, 978-5-6045110-0-8
  22. Горелов А. М., Зевакин Е. А., Иванов С. Г., Каледин С. Б., Леонов С. О., Носов В. Н., Савин А. С. О комплексном подходе кдистанционной регистрации гидродинамических возмущений морской среды оптическими методами // Физические основы приборостроения. 2012. Т. 1. № 4(5). С. 58-65. DOI: 10.25210/jfop-1204-058065

Учет данных спутникового зондирования в ИК-диапазоне при выборе СВЧ-модели облачной атмосферы / Taking Into Account Satellite Sensing Data in the IR Range when Choosing a Microwave Model of a Cloudy Atmosphere

Данилычев М.В. / Danilychev, M.V.
Институт радиотехники и электроники имени В.А.Котельникова РАН / Kotelnikov Institute of Radio Engineering and Electronics RAS
Егоров Д.П. / Egorov, D.P.
Институт радиотехники и электроники имени В.А.Котельникова РАН / Kotelnikov Institute of Radio Engineering and Electronics RAS
Кутуза И.Б. / Kutuza, I.B.
Научно-технологический центр уникального приборостроения РАН / Scientific and Technological Center for Unique Instrumentation RAS
Кутуза Б.Г. / Kutuza, B.G.
Институт радиотехники и электроники имени В.А.Котельникова РАН / Kotelnikov Institute of Radio Engineering and Electronics RAS
Выпуск в базе РИНЦ
Данилычев М.В., Егоров Д.П., Кутуза И.Б., Кутуза Б.Г. Учет данных спутникового зондирования в ИК-диапазоне при выборе СВЧ-модели облачной атмосферы // Физические основы приборостроения. 2022. Т. 11. № 3(45). С. 84–91. DOI: 10.25210/jfop-2203-084091

Danilychev, M.V., Egorov, D.P., Kutuza, I.B., Kutuza, B.G. Taking Into Account Satellite Sensing Data in the IR Range when Choosing a Microwave Model of a Cloudy Atmosphere // Physical Bases of Instrumentation. 2022. Vol. 11. No. 3(45). P. 84–91. DOI: 10.25210/jfop-2203-084091


Аннотация: Использование данных совместного спутникового зондирования атмосферы в инфракрасном (ИК) и СВЧ диапазонах позволяет повысить качество решения обратной задачи дистанционного зондирования (ДЗ) атмосферы. Учет данных зондирования, полученных в ИК- диапазоне, в применяемых СВЧ- алгоритмах способствует обоснованному выбору расчетной модели облачной атмосферы и более корректной оценке ее параметров. Выполненные в работе оценки показывают возможность дальнейшего развития данного направления за счет использования процедуры совместной классификации данных ближнего и дальнего ИК диапазонов.

Abstract: The use of data from simultaneous satellite sensing of the atmosphere in the infrared (IR) and microwave ranges makes it possible to improve the quality of solving the inverse problem of remote sensing of the atmosphere. Taking into account the sensing data obtained in the IR range in the applied microwave algorithms contributes to the reasonable choice of the calculation model of the cloud atmosphere and a more correct assessment of its parameters. The theoretical estimates carried out in the work show the possibility of further improvement of the results of the microwave algorithms by using the procedure of joint classification of near and far infrared data.

Ключевые слова: спутниковые измерения, атмосфера, инфракрасная радиометрия, СВЧ- радиометрия, remote sensing, satellite measurements, atmosphere, infrared radiometry, спутниковые измерения


Литература / References
  1. Саворский В. П., Кутуза Б. Г., Аквилонова А. Б., Кибардина И. Н., Панова О. Ю., Данилычев М. В., Широков С. В. Повышение эффективности восстановления температурно-влажностных профилей облачной атмосферы по данным спутниковых СВЧ-радиометров // Радиотехника и Электроника. 2020. № 7. С. 658-666.
  2. Данилычев М. В., Кутуза Б. Г., Аквилонова А. Б., Саворский В. П., Панова О. Ю. Выбор конструкции перспективного СВЧ-радиометра для спутникового мониторинга атмосферы // Распространение радиоволн: труды XXVII Всероссийской открытой научной конференции. Калининград, БФУ им. И. Канта. 2021. С. 728-733.
  3. Данилычев М. В., Кравченко В. Ф., Кутуза Б. Г., Чуриков Д. В. Спутниковые СВЧ радиометрические комплексы дистанционного зондирования Земли. Современное состояние и тенденции развития // Физические основы приборостроения. 2014. Т. 3. № 1(10). С. 3-25. DOI: 10.25210/jfop-1401-003025
  4. Applications of AVHRR Date: Special Issue // Int. J. Of Rem. Sens. Vol. 10. Iss. 4-5. April/May 1989.
  5. Завод ракетно-космического приборостроения ОАО «Российские космические системы» (http://www.rkp.rniikp.ru/)
  6. Cheremisin, G.S., Egorov, D.P., and Kravchenko, O.V. Deep Convolutional Neural Network for Reconstructing the Cloud Phase Distribution From Level-1b MODIS Data // Proceedings of 2nd International Conference on Applied Mathematics in Science and Engineering (AMSE-2022). 2022.
  7. Platnick, S., Ackerman, S., and King, M. Modis Atmosphere l2 Cloud Product (06_l2) // NASa MODIS Adaptive Processing System, Goddard Space Flight Center, USA. 2015.
  8. Guenther, B., Godden, G.D., Xiong, X., Knight, E.J., Qiu, S.Y., Montgomery, H., Hopkins, M.M., Khayat, M.G., and Hao, Z. Prelaunch Algorithm and Data Format for the Level 1 Calibration Products for the EOS-AM1 Moderate Resolution Imaging Spectroradiometer (MODIS) // IEEE Trans. Geosci. Remote Sensing. 1998. Vol. 36. P. 1142-1151. DOI: 10.1109/36.701021
  9. Platnick, S., King, M., Ackerman, S., Menzel, W., Baum, B., Riedi, J., and Frey, R. The MODIS Cloud Products: Algorithms and Examples From Terra // IEEE Trans. Geosci. Rem. Sens. 2003. Vol. 41. I. 2. P. 459-473. DOI: 10.1109/TGRS.2002.808301
  10. Baum, B.A., Menzel, W.P., Frey, R.A., Tobin, D.C., Holz, R.E., and Ackerman, S.A. MODIS Cloud-Top Property Refinements for Collection 6 // Journal of Applied Meteorology and Climatology. 2012. Vol. 51. I. 6. P. 1145-1163. DOI: 10.1175/JAMC-D-11-0203.1
  11. Nakajima, T., King, M.D. Determination of the Optical Thickness and Effective Particle Radius of Clouds From Reflected Solar Radiation Measurements. Part I: Theory // Journal of the Atmospheric Sciences. 1990. Vol. 47. Iss. 15. P. 1878-1893. DOI: 10.1175/1520-0469(1990)047<1878: DOTOTA>2.0.CO;2
  12. Platnick, S., Li, J., King, M., Gerber, H., and Hobbs, P. A Solar Reflectance Method for Retrieving the Optical Thickness and Droplet Size of Liquid Water Clouds Over Snow and Ice Surfaces // Journal of Geophysical Research. 2001. Vol. 106. D14. P. 15185-15199. DOI: 10.1029/2000JD900441
  13. Chylek, P., Robinson, S., Dubey, M.K., King, M.D., Fu, Q., and Clodius, W.B.Comparison of Near-Infrared and Thermal Infrared Cloud Phase Detections // Journal of Geophysical Research. 2006. Vol. 111. D20203. P. 1-8. DOI: 10.1029/2006JD007140
  14. Goodfellow, I., Bengio, Y., and Courville, A. Deep Learning. Cambridge: MIT Press, 2016. 781 p.
  15. Breiman, L. Bagging Predictors // Machine Learning. 1996. Vol. 24. Iss. 2. P. 123-140. DOI: 10.1007/BF00058655
  16. Level-1 and Atmosphere Archive & Distribution System. Distributed Active Archive Center. URL: https://ladsweb.modaps.eosdis.nasa.gov/search/(дата обращения: 27.01.2022).
  17. Egorov, D.P., and Kutuza, B.G. Atmospheric Brightness Temperature Fluctuations in the Resonance Absorption Band of Water Vapor 18-27.2 GHz // IEEE Trans. Geosci. Rem. Sens. 2021. Vol. 59. Iss. 9. P. 7627-7634. DOI: 10.1109/TGRS.2020.3034533
  18. Egorov, D.P., and Kutuza, B.G. The Influence of Water Vapor and Cumulus Clouds on the Brightness-Temperature Fluctuations in the Downwelling K-Band Radiation of the Atmosphere // Radiophysics and Quantum Electronics. 2021. Vol. 64. Iss. 8-9. P. 641-649. DOI: 10.1007/s11141-022-10166-3
  19. Egorov, D.P., Ilyushin, Ya.A., and Kutuza, B.G. Microwave Radiometric Sensing of Cumulus Cloudiness From Space // Radiophysics and Quantum Electronics. 2021. Vol. 64. Iss. 8-9. P. 564-572. DOI: 10.1007/s11141-022-10159-2
  20. Shen, W., Wang, X., Wang, Y., Bai, X., and Zhang, Z. DeepContour: a Deep Convolutional Feature Learned by Positive-Sharing Loss for Contour Detection // IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2015. P. 3982-3991. DOI: 10.1109/CVPR.2015.7299024

Математическое моделирование процессов атаки на биометрическое предъявление в технических системах / Modeling a Spoofing Attack on a Biometric System

Коннова Н.С. / Konnova, N.S.
Московский государственный технический университет им. Н. Э. Баумана / Bauman Moscow State Technical University
Мизинов П.В. / Mizinov, P.V.
Московский государственный технический университет им. Н. Э. Баумана / Bauman Moscow State Technical University
Выпуск в базе РИНЦ
Коннова Н.С., Мизинов П.В. Математическое моделирование процессов атаки на биометрическое предъявление в технических системах // Физические основы приборостроения. 2022. Т. 11. № 3(45). С. 92–97. DOI: 10.25210/jfop-2203-092097

Konnova, N.S., Mizinov, P.V. Modeling a Spoofing Attack on a Biometric System // Physical Bases of Instrumentation. 2022. Vol. 11. No. 3(45). P. 92–97. DOI: 10.25210/jfop-2203-092097


Аннотация: В данной статье в контексте безопасности рассматриваются биометрические системы на основе васкулярного сканирования кисти руки. Затрагиваются вопросы математического моделирования процесса проведения спуфинг атаки на данный вид систем. Обсуждаются результаты натурного эксперимента.

Abstract: In this article in the context of security biometric systems based on vascular hand scanning are considered. The issues of mathematical modeling of spoofing attack process on this type of systems are touched upon. The results of a fullscale experiment are discussed.

Ключевые слова: венозный рисунок, спуфинг, атака на биометрическое предъявление, артефакт, presentation attack, biometrics, vein pattern, spoofing, biometric presentation attack, artifact, венозный рисунок


Литература / References
  1. Basarab, M.A. User Identification Based on the Vein Pattern in Biometric Immobilizer // CEUR Workshop Proceedings. 2019. Vol. 2603. P. 1-5.
  2. FIDIS. D6.1 Forensic Implications of Identity Management Systems [Электронный ресурс]. 2006. URL: http://www.fidis.net/fileadmin/fidis/deliverables/fidis_wp6_del6.1.forensic_implications_of_identity_management_systems.pdf (дата обр.30.06.2021).
  3. Tome, P., Vanoni, M., and Marcel, S. On the Vulnerability of Finger Vein Recognition to Spoofing // 2014 International Conference of the Biometrics Special Interest Group (BIOSIG). 2014. P. 1-10.
  4. Tome, P., Marcel, S. On the Vulnerability of Palm Vein Recognition to Spoofing Attacks // Proceedings of 2015 International Conference on Biometrics, ICB 2015. 2015. DOI: 10.1109/Icb.2015.7139056
  5. Patil, I., Bhilare, S., and Kanhangad, V. Assessing Vulnerability of Dorsal Handvein Verification System to Spoofing Attacks Using Smartphone Camera // 2016 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA). 2016. P. 1-6. DOI: 10.1109/Isba.2016.7477232
  6. Sasaki, S., Kawai, H., and Wakabayashi, A. Business Expansion of Palm Vein Pattern Authentication Technology // FUJITSU Sci. Tech. J. 2005. Vol. 41. P. 341-347.
  7. Kozarski, J. et al. Surgical Treatment of Hand Vascular Anomalies: a Case Report // Vojnosanitetski Pregled. Militarymedical and Pharmaceutical Review. 2014. Vol. 71. Iss. 1. P. 73-77. DOI: 10.2298/Vsp1401073k
  8. Al-Najjar, Y. A., Soong, D. C. et al.Comparison of Image Quality Assessment: PSNR, HVS, SSIM, UIQI // Int. J. Sci. Eng. Res. 2012. Vol. 3. Iss. 8. P. 1-5.
  9. Коннова Н., Мизинов П. Анализ надежности методов аутентификации на основе васкулярного сканирования // Физические основы приборостроения. 2021. Т. 10. № 4(42). С. 5263. DOI: 10.25210/Jfop-2104-052063

К 85-летию Дмитрия Сергеевича Лукина / To the 85th Anniversary of Dmitry Sergeyevich Lukin

Выпуск в базе РИНЦ
К 85-летию Дмитрия Сергеевича Лукина // Физические основы приборостроения. 2022. Т. 11. № 3(45). С. 98–99. DOI: 10.25210/jfop-2203-098099

To the 85th Anniversary of Dmitry Sergeyevich Lukin // Physical Bases of Instrumentation. 2022. Vol. 11. No. 3(45). P. 98–99. DOI: 10.25210/jfop-2203-098099


Аннотация:

Abstract:

Ключевые слова:


Литература / References